File size: 24,921 Bytes
af98a6c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 |
import copy
import math
import pickle
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
import difflib
from typing import Optional, Tuple, Union
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor, BertTokenizer, BertModel, Wav2Vec2Model, Wav2Vec2Config
from transformers.models.wav2vec2.modeling_wav2vec2 import Wav2Vec2FeatureEncoder
from .motion_encoder import VQEncoderV6
def audio_to_time_aligned_text_features(inputs, processor, model, tokenizer, bert_model):
with torch.no_grad():
logits = model(inputs.input_values).logits # shape: (1, time_steps, vocab_size)
predicted_ids_per_timestep = torch.argmax(logits, dim=-1) # shape: (1, time_steps)
predicted_ids_per_timestep = predicted_ids_per_timestep[0].cpu().numpy()
vocab = processor.tokenizer.get_vocab()
id_to_token = {v: k for k, v in vocab.items()}
tokens_per_timestep = [id_to_token[id] for id in predicted_ids_per_timestep]
predicted_ids = torch.argmax(logits, dim=-1)
transcription = processor.decode(predicted_ids[0])
inputs_bert = tokenizer(transcription, return_tensors='pt')
input_ids = inputs_bert['input_ids'][0]
tokens_bert = tokenizer.convert_ids_to_tokens(input_ids)
with torch.no_grad():
outputs_bert = bert_model(**inputs_bert.to(inputs.input_values.device))
all_token_embeddings = outputs_bert.last_hidden_state[0]
per_timestep_chars = []
per_timestep_char_indices = []
for idx, t in enumerate(tokens_per_timestep):
if t not in ('<pad>', '|'):
per_timestep_chars.append(t.lower())
per_timestep_char_indices.append(idx)
bert_chars = []
bert_char_indices = []
for idx, token in enumerate(tokens_bert):
if token in ('[CLS]', '[SEP]'):
continue
token_str = token.replace('##', '')
for c in token_str:
bert_chars.append(c)
bert_char_indices.append(idx)
s = difflib.SequenceMatcher(None, per_timestep_chars, bert_chars)
opcodes = s.get_opcodes()
per_timestep_to_bert_token_idx = {}
for tag, i1, i2, j1, j2 in opcodes:
if tag == 'equal':
for k in range(i2 - i1):
per_timestep_idx = per_timestep_char_indices[i1 + k]
bert_token_idx = bert_char_indices[j1 + k]
per_timestep_to_bert_token_idx[per_timestep_idx] = bert_token_idx
features_per_timestep = []
check = []
for i, per_token in enumerate(tokens_per_timestep):
if i == 0:
embedding = all_token_embeddings[0]
check.append("cls")
elif per_token in ('<pad>', '|'):
embedding = torch.zeros(all_token_embeddings.shape[-1]).to(inputs.input_values.device)
check.append(0)
else:
if i in per_timestep_to_bert_token_idx:
bert_idx = per_timestep_to_bert_token_idx[i]
embedding = all_token_embeddings[bert_idx]
check.append(tokens_bert[bert_idx])
else:
embedding = torch.zeros(all_token_embeddings.shape[-1]).to(inputs.input_values.device)
check.append(0)
features_per_timestep.append(embedding)
features_per_timestep = torch.stack(features_per_timestep)
updated_check = check.copy()
for i in range(len(check)):
if check[i] == 0:
left = i - 1
right = i + 1
left_found = False
right_found = False
while left >= 0:
if check[left] != 0:
left_found = True
break
left -= 1
while right < len(check):
if check[right] != 0:
right_found = True
break
right += 1
if left_found and right_found:
if (i - left) <= (right - i):
nearest = left
else:
nearest = right
elif left_found:
nearest = left
elif right_found:
nearest = right
else:
continue
updated_check[i] = updated_check[nearest]
features_per_timestep[i] = features_per_timestep[nearest]
features_per_timestep = features_per_timestep.unsqueeze(0)
return transcription, features_per_timestep, all_token_embeddings
class MLP(nn.Module):
def __init__(self, in_dim, hidden_size, out_dim):
super().__init__()
self.mlp = nn.Sequential(
nn.Linear(in_dim, hidden_size),
nn.LeakyReLU(0.2, True),
nn.Linear(hidden_size, out_dim)
)
def forward(self, inputs):
out = self.mlp(inputs)
return out
class PeriodicPositionalEncoding(nn.Module):
def __init__(self, d_model, dropout=0.1, period=20, max_seq_len=64):
super(PeriodicPositionalEncoding, self).__init__()
self.dropout = nn.Dropout(p=dropout)
pe = torch.zeros(period, d_model)
position = torch.arange(0, period, dtype=torch.float).unsqueeze(1)
div_term = torch.exp(torch.arange(0, d_model, 2).float() * (-math.log(10000.0) / d_model))
pe[:, 0::2] = torch.sin(position * div_term)
pe[:, 1::2] = torch.cos(position * div_term)
pe = pe.unsqueeze(0) # (1, period, d_model)
repeat_num = (max_seq_len//period) + 1
pe = pe.repeat(1, repeat_num, 1) # (1, repeat_num, period, d_model)
self.register_buffer('pe', pe)
def forward(self, x):
# print(self.pe.shape, x.shape)
x = x + self.pe[:, :x.size(1), :]
return self.dropout(x)
class CustomMultiheadAttention(nn.Module):
def __init__(self, embed_dim, num_heads):
super(CustomMultiheadAttention, self).__init__()
self.num_heads = num_heads
self.head_dim = embed_dim // num_heads
assert self.head_dim * num_heads == embed_dim, "embed_dim must be divisible by num_heads"
self.query_proj = nn.Linear(embed_dim, embed_dim)
self.key_proj = nn.Linear(embed_dim, embed_dim)
self.value_proj = nn.Linear(embed_dim, embed_dim)
self.out_proj = nn.Linear(embed_dim, embed_dim)
def forward(self, query, key, value):
batch_size, seq_len, embed_dim = query.size()
# Linear projections
Q = self.query_proj(query).view(batch_size, seq_len, self.num_heads, self.head_dim).transpose(1, 2)
K = self.key_proj(key).view(batch_size, seq_len, self.num_heads, self.head_dim).transpose(1, 2)
V = self.value_proj(value).view(batch_size, seq_len, self.num_heads, self.head_dim).transpose(1, 2)
# Scaled dot-product attention
scores = torch.matmul(Q, K.transpose(-2, -1)) / (self.head_dim ** 0.5)
attn_weights = F.softmax(scores, dim=-1) # Shape: (batch_size, num_heads, seq_len, seq_len)
attn_output = torch.matmul(attn_weights, V)
# Concatenate heads
attn_output = attn_output.transpose(1, 2).contiguous().view(batch_size, seq_len, embed_dim)
# Apply final linear projection
output = self.out_proj(attn_output)
return output, attn_weights # Return the per-head attention weights
def reinitialize_weights(module):
for submodule in module.modules():
weight = getattr(submodule, 'weight', None)
if weight is not None and isinstance(weight, torch.Tensor) and weight.dim() >= 2:
torch.nn.init.xavier_uniform_(weight)
print("init")
elif weight is not None and isinstance(weight, torch.Tensor):
torch.nn.init.normal_(weight, mean=0.0, std=0.02)
print("init")
bias = getattr(submodule, 'bias', None)
if bias is not None and isinstance(bias, torch.Tensor):
torch.nn.init.zeros_(bias)
class WrapedMotionCNN(nn.Module):
def __init__(self, args):
super(WrapedMotionCNN, self).__init__()
self.args = args
encoder_layer = nn.TransformerEncoderLayer(
d_model=self.args.motion_f, # This should match the hidden size of the Wav2Vec2 model
nhead=8, # Number of attention heads
dim_feedforward=self.args.hidden_size, # The feedforward network dimension
dropout=0.1, # Dropout rate
batch_first=True
)
args_top = copy.deepcopy(self.args)
args_top.vae_layer = 3
args_top.vae_length = self.args.motion_f
args_top.vae_test_dim = self.args.motion_dim
self.feature_extractor = VQEncoderV6(args_top)
args_top = copy.deepcopy(self.args)
args_top.vae_layer = 6
args_top.vae_length = self.args.motion_f
args_top.vae_test_dim = self.args.motion_dim + self.args.motion_f
self.encoder_cnn = VQEncoderV6(args_top)
self.pos_encoding = PeriodicPositionalEncoding(d_model=self.args.motion_f, period=20, max_seq_len=64, dropout=0.0)
self.encoder_trans = nn.TransformerEncoder(encoder_layer, num_layers=1) # Wav2Vec2Model.from_pretrained('facebook/wav2vec2-base-960h').encoder
def forward(self,
inputs,
attention_mask: Optional[torch.Tensor] = None,
mask_time_indices: Optional[torch.FloatTensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None
):
low_level = self.feature_extractor(inputs)
# print(low_level.shape, inputs.shape)
hidden_states = self.encoder_cnn(torch.cat([low_level.detach(), inputs], dim=-1))
hidden_states = self.pos_encoding(hidden_states)
hidden_states = self.encoder_trans(hidden_states)
return {
"low_level": low_level,
"high_level": hidden_states
}
class WrapedWav2Vec(nn.Module):
def __init__(self):
super(WrapedWav2Vec, self).__init__()
self.feature_extractor = Wav2Vec2Model.from_pretrained('facebook/wav2vec2-base-960h').feature_extractor
self.feature_projection = Wav2Vec2Model.from_pretrained('facebook/wav2vec2-base-960h').feature_projection
self.encoder = Wav2Vec2Model.from_pretrained('facebook/wav2vec2-base-960h').encoder
# print(self.encoder)
self.encoder.layers = self.encoder.layers[:1]
# print(self.encoder)
self.proj_down = nn.Linear(768,512)
# print(bug)
def forward(self,
inputs,
attention_mask: Optional[torch.Tensor] = None,
mask_time_indices: Optional[torch.FloatTensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None
):
finetune_audio_low = self.feature_extractor(inputs).transpose(1, 2)
hidden_states, _ = self.feature_projection(finetune_audio_low.detach())
encoder_outputs = self.encoder(
hidden_states,
attention_mask=attention_mask,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
hidden_states = encoder_outputs[0]
hidden_states = self.proj_down(hidden_states)
# print(hidden_states.shape)
return {
"low_level": finetune_audio_low,
"high_level": hidden_states
}
class JointEmbedding(nn.Module):
def __init__(self, args):
super(JointEmbedding, self).__init__()
self.args = args.model
self.audio_processor = Wav2Vec2Processor.from_pretrained('facebook/wav2vec2-base-960h')
self.audio_encoder = Wav2Vec2Model.from_pretrained('facebook/wav2vec2-base-960h')
self.config_wav2vec = Wav2Vec2Config.from_pretrained('facebook/wav2vec2-base-960h')
# self.audio_encoder_fintune = Wav2Vec2Model.from_pretrained('facebook/wav2vec2-base-960h').feature_extractor
self.audio_encoder_fintune = WrapedWav2Vec()
# print(self.audio_encoder_fintune)
# print(bug)
self.asr = Wav2Vec2ForCTC.from_pretrained('facebook/wav2vec2-base-960h')
self.bert_tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
self.bert_model = BertModel.from_pretrained('bert-base-uncased')
self.audio_low_mapping = MLP(512+512, self.args.hidden_size, self.args.audio_f)
self.audio_high_mapping = MLP(512+512+512, self.args.hidden_size, self.args.audio_f)
# self.audio_down_proj_1 = nn.Linear(768, 512)
self.audio_down_proj_2 = nn.Linear(768, 512)
self.audio_down_proj_3 = nn.Linear(768, 512)
# self.audio_sa = nn.MultiheadAttention(embed_dim=self.args.audio_f, num_heads=8, batch_first=True)
self.audio_sa = CustomMultiheadAttention(embed_dim=self.args.audio_f, num_heads=8,)
self.motion_encoder_fintune = WrapedMotionCNN(self.args)
self.motion_low_mapping = MLP(self.args.motion_f, self.args.hidden_size, self.args.motion_f)
self.motion_high_mapping = MLP(self.args.motion_f, self.args.hidden_size, self.args.motion_f)
# self.motion_sa = nn.MultiheadAttention(embed_dim=self.args.audio_f, num_heads=8, batch_first=True)
self.motion_sa = CustomMultiheadAttention(embed_dim=self.args.audio_f, num_heads=8,)
self.down_sample = 2 # for downsample 30 fps motion to 15
self.smplx_model = None
self.get_motion_reps = None
self.audio_to_time_aligned_text_features = audio_to_time_aligned_text_features
self.low_temp = nn.Parameter(torch.tensor(0.07))
self.low_level_loss_fn = None
self.high_temp = nn.Parameter(torch.tensor(0.07))
self.high_level_loss_fn = None
def _reset_parameters(self):
nn.init.normal_(self.mask_embeddings, 0, self.args.hidden_size ** -0.5)
def forward(self, in_audio=None, in_motion=None, cached_audio_low=None, cached_audio_high=None, cached_rep15d=None):
# motion feature
if cached_rep15d is not None:
in_motion = cached_rep15d[:,::self.down_sample]
else:
in_motion = self.get_motion_reps(in_motion, self.smplx_model)["rep15d"][:,::self.down_sample]
motion_features = self.motion_encoder_fintune(in_motion)
raw_motion_low = motion_features["low_level"] # self.motion_encoder_low(in_motion)
raw_motion_high = motion_features["high_level"] # self.motion_encoder_high(torch.cat([raw_motion_low.detach(), in_motion], dim=-1))
motion_low = self.motion_low_mapping(raw_motion_low)
motion_high = self.motion_high_mapping(raw_motion_high)
motion_high_att, motion_high_weight = self.motion_sa(motion_high, motion_high, motion_high)
bs, n, c = motion_high.shape
# print("a:", motion_high_weight[:, :, 0, :].unsqueeze(2).shape, "b:", motion_high.transpose(1, 2).view(bs, 8, c//8, n).shape)
motion_high_att_before_sum = motion_high_weight[:, :, 0, :].unsqueeze(2) * motion_high.transpose(1, 2).view(bs, 8, c//8, n)
motion_high_att_before_sum = motion_high_att_before_sum.reshape(bs, c, n).transpose(1, 2)
motion_low = F.interpolate(motion_low.transpose(1, 2), scale_factor=2, mode='linear', align_corners=True).transpose(1, 2)
motion_high_att = F.interpolate(motion_high_att.transpose(1, 2), scale_factor=2, mode='linear', align_corners=True).transpose(1, 2)
motion_high_att_before_sum = F.interpolate(motion_high_att_before_sum.transpose(1, 2), scale_factor=2, mode='linear', align_corners=True).transpose(1, 2)
motion_cls = motion_high_att[:, 0]
# audio feature
if cached_audio_low is not None:
raw_audio_low = cached_audio_low
raw_audio_high = torch.cat([self.audio_down_proj_2(cached_audio_high[:, :, :768]), self.audio_down_proj_3(cached_audio_high[:, :, 768:])], dim=-1)
audio_list = [i.cpu().numpy() for i in in_audio]
inputs = self.audio_processor(audio_list, sampling_rate=16000, return_tensors="pt", padding=True).to(in_audio.device)
finetune_audio = self.audio_encoder_fintune(inputs.input_values)
finetune_audio_low, finetune_audio_high = finetune_audio["low_level"], finetune_audio["high_level"]
diff = raw_audio_low.shape[1] - finetune_audio_low.shape[1]
if diff > 0:
finetune_audio_low = torch.cat([finetune_audio_low, finetune_audio_low[:, -diff:]], dim=1)
diff = raw_audio_high.shape[1] - finetune_audio_high.shape[1]
if diff > 0:
finetune_audio_high = torch.cat([finetune_audio_high, finetune_audio_high[:, -diff:]], dim=1)
raw_audio_low = torch.cat([raw_audio_low, finetune_audio_low], dim=-1) # bs, t, 1024
else:
print("error! must have cached audio in training")
# print(raw_audio_low.shape, raw_audio_high.shape, "before")
raw_audio_low = F.interpolate(raw_audio_low.transpose(1, 2), scale_factor=30/50, mode='linear', align_corners=True).transpose(1, 2)
raw_audio_high = F.interpolate(raw_audio_high.transpose(1, 2), scale_factor=15/50, mode='linear', align_corners=True).transpose(1, 2)
finetune_audio_high = F.interpolate(finetune_audio_high.transpose(1, 2), scale_factor=15/50, mode='linear', align_corners=True).transpose(1, 2)
# print(raw_audio_low.shape, raw_audio_high.shape, "after")
audio_low = self.audio_low_mapping(raw_audio_low)
raw_audio_high = torch.cat([finetune_audio_high, raw_audio_high], dim=-1)
# print(finetune_audio_high.shape, raw_audio_high.shape)
audio_high = self.audio_high_mapping(raw_audio_high)
audio_high_att, audio_high_weight = self.audio_sa(audio_high, audio_high, audio_high)
bs, n, c = audio_high.shape
audio_high_att_before_sum = audio_high_weight[:, :, 0, :].unsqueeze(2) * audio_high.transpose(1, 2).view(bs, 8, c//8, n)
audio_high_att_before_sum = audio_high_att_before_sum.reshape(bs, c, n).transpose(1, 2)
audio_high_att = F.interpolate(audio_high_att.transpose(1, 2), scale_factor=2, mode='linear', align_corners=True).transpose(1, 2)
audio_high_att_before_sum = F.interpolate(audio_high_att_before_sum.transpose(1, 2), scale_factor=2, mode='linear', align_corners=True).transpose(1, 2)
audio_cls = audio_high_att[:, 0]
# low_infonce, low_acc = self.low_level_loss_fn(audio_low, motion_low, learned_temp=self.low_temp)
# fix temp to 0.1 is better than learned temp
low_infonce, low_acc = self.low_level_loss_fn(audio_low, motion_low)
high_infonce = self.high_level_loss_fn(audio_cls, motion_cls)
return {
"audio_low":audio_low,
"audio_high":audio_high_att,
"audio_cls":audio_cls,
"audio_high_weight":audio_high_att_before_sum,
"motion_low":motion_low,
"motion_high":motion_high_att,
"motion_cls":motion_cls,
"motion_high_weight":motion_high_att_before_sum,
"low_level_loss": [low_infonce, low_acc],
"high_level_loss": high_infonce
}
def get_audio_features(self, in_audio):
audio_list = [i.cpu().numpy() for i in in_audio]
inputs = self.audio_processor(audio_list, sampling_rate=16000, return_tensors="pt", padding=True).to(in_audio.device)
raw_audio_low = self.audio_encoder.feature_extractor(inputs.input_values).transpose(1, 2)
raw_audio_low = raw_audio_low
finetune_audio = self.audio_encoder_fintune(inputs.input_values)
finetune_audio_low, finetune_audio_high = finetune_audio["low_level"], finetune_audio["high_level"]
diff = raw_audio_low.shape[1] - finetune_audio_low.shape[1]
if diff > 0:
finetune_audio_low = torch.cat([finetune_audio_low, finetune_audio_low[:, -diff:]], dim=1)
raw_audio_low = torch.cat([raw_audio_low, finetune_audio_low], dim=-1)
raw_audio_high = self.audio_encoder(inputs.input_values).last_hidden_state
diff = raw_audio_high.shape[1] - finetune_audio_high.shape[1]
if diff > 0:
finetune_audio_high = torch.cat([finetune_audio_high, finetune_audio_high[:, -diff:]], dim=1)
# print(raw_audio_high.shape, finetune_audio_high.shape)
_, bert_time_aligned_text, _ = audio_to_time_aligned_text_features(inputs, self.audio_processor, self.asr, self.bert_tokenizer, self.bert_model)
raw_audio_high = torch.cat([raw_audio_high, bert_time_aligned_text], dim=2)
raw_audio_high = torch.cat([self.audio_down_proj_2(raw_audio_high[:, :, :768]), self.audio_down_proj_3(raw_audio_high[:, :, 768:])], dim=-1)
raw_audio_low = F.interpolate(raw_audio_low.transpose(1, 2), scale_factor=30/50, mode='linear', align_corners=True).transpose(1, 2)
raw_audio_high = F.interpolate(raw_audio_high.transpose(1, 2), scale_factor=15/50, mode='linear', align_corners=True).transpose(1, 2)
finetune_audio_high = F.interpolate(finetune_audio_high.transpose(1, 2), scale_factor=15/50, mode='linear', align_corners=True).transpose(1, 2)
if raw_audio_low.shape[1] % 2 == 1:
raw_audio_low = torch.cat([raw_audio_low, raw_audio_low[:, -1:]], dim=1)
diff = raw_audio_low[:, ::2].shape[1] - raw_audio_high.shape[1]
if diff > 0:
raw_audio_high = torch.cat([raw_audio_high, raw_audio_high[:, -diff:]], dim=1)
finetune_audio_high = torch.cat([finetune_audio_high, finetune_audio_high[:, -diff:]], dim=1)
audio_low = self.audio_low_mapping(raw_audio_low)
# print(audio_low.shape[1]//2, raw_audio_high.shape[1])
raw_audio_high = torch.cat([finetune_audio_high, raw_audio_high], dim=-1)
audio_high = self.audio_high_mapping(raw_audio_high)
audio_high_att, audio_high_weight = self.audio_sa(audio_high, audio_high, audio_high)
bs, n, c = audio_high.shape
audio_high_att_before_sum = audio_high_weight[:, :, 0, :].unsqueeze(2) * audio_high.transpose(1, 2).view(bs, 8, c//8, n)
audio_high_att_before_sum = audio_high_att_before_sum.reshape(bs, c, n).transpose(1, 2)
audio_high_att = F.interpolate(audio_high_att.transpose(1, 2), scale_factor=2, mode='linear', align_corners=True).transpose(1, 2)
audio_high_att_before_sum = F.interpolate(audio_high_att_before_sum.transpose(1, 2), scale_factor=2, mode='linear', align_corners=True).transpose(1, 2)
audio_cls = audio_high_att[:, 0]
return {
"audio_low":audio_low,
"audio_high":audio_high_att,
"audio_cls":audio_cls,
"audio_high_weight":audio_high_att_before_sum,
}
def get_motion_features(self, in_motion):
original_length = in_motion.shape[1]
in_motion = self.get_motion_reps(in_motion, self.smplx_model)["rep15d"][:,::self.down_sample]
motion_features = self.motion_encoder_fintune(in_motion)
raw_motion_low = motion_features["low_level"] # self.motion_encoder_low(in_motion)
raw_motion_high = motion_features["high_level"] # self.motion_encoder_high(torch.cat([raw_motion_low.detach(), in_motion], dim=-1))
motion_low = self.motion_low_mapping(raw_motion_low)
motion_high = self.motion_high_mapping(raw_motion_high)
motion_high_att, motion_high_weight = self.motion_sa(motion_high, motion_high, motion_high)
bs, n, c = motion_high.shape
motion_high_att_before_sum = motion_high_weight[:, :, 0, :].unsqueeze(2) * motion_high.transpose(1, 2).view(bs, 8, c//8, n)
motion_high_att_before_sum = motion_high_att_before_sum.reshape(bs, c, n).transpose(1, 2)
motion_low = F.interpolate(motion_low.transpose(1, 2), scale_factor=2, mode='linear', align_corners=True).transpose(1, 2)
motion_high_att = F.interpolate(motion_high_att.transpose(1, 2), scale_factor=2, mode='linear', align_corners=True).transpose(1, 2)
motion_high_att_before_sum = F.interpolate(motion_high_att_before_sum.transpose(1, 2), scale_factor=2, mode='linear', align_corners=True).transpose(1, 2)
# if motion_low.shape[1] -
motion_low = motion_low[:, :original_length]
motion_high_att = motion_high_att[:, :original_length]
motion_high_att_before_sum = motion_high_att_before_sum[:, :original_length]
motion_cls = motion_high_att[:, 0]
# print(original_length, motion_low.shape, motion_high_att.shape, motion_high_att_before_sum.shape)
return {
"motion_low":motion_low,
"motion_high":motion_high_att,
"motion_cls":motion_cls,
"motion_high_weight":motion_high_att_before_sum,
}
|