File size: 24,921 Bytes
af98a6c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
import copy
import math
import pickle
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
import difflib
from typing import Optional, Tuple, Union

from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor, BertTokenizer, BertModel, Wav2Vec2Model, Wav2Vec2Config
from transformers.models.wav2vec2.modeling_wav2vec2 import Wav2Vec2FeatureEncoder
from .motion_encoder import VQEncoderV6


def audio_to_time_aligned_text_features(inputs, processor, model, tokenizer, bert_model):  
    with torch.no_grad():
        logits = model(inputs.input_values).logits  # shape: (1, time_steps, vocab_size)

    predicted_ids_per_timestep = torch.argmax(logits, dim=-1)  # shape: (1, time_steps)
    predicted_ids_per_timestep = predicted_ids_per_timestep[0].cpu().numpy()
    vocab = processor.tokenizer.get_vocab()
    id_to_token = {v: k for k, v in vocab.items()}
    tokens_per_timestep = [id_to_token[id] for id in predicted_ids_per_timestep]

    predicted_ids = torch.argmax(logits, dim=-1)
    transcription = processor.decode(predicted_ids[0])
    inputs_bert = tokenizer(transcription, return_tensors='pt')
    input_ids = inputs_bert['input_ids'][0]  
    tokens_bert = tokenizer.convert_ids_to_tokens(input_ids)

    with torch.no_grad():
        outputs_bert = bert_model(**inputs_bert.to(inputs.input_values.device))
    all_token_embeddings = outputs_bert.last_hidden_state[0]  
    per_timestep_chars = []
    per_timestep_char_indices = []
    for idx, t in enumerate(tokens_per_timestep):
        if t not in ('<pad>', '|'):
            per_timestep_chars.append(t.lower())
            per_timestep_char_indices.append(idx)
    bert_chars = []
    bert_char_indices = []
    for idx, token in enumerate(tokens_bert):
        if token in ('[CLS]', '[SEP]'):
            continue
        token_str = token.replace('##', '')
        for c in token_str:
            bert_chars.append(c)
            bert_char_indices.append(idx)

    s = difflib.SequenceMatcher(None, per_timestep_chars, bert_chars)
    opcodes = s.get_opcodes()
    per_timestep_to_bert_token_idx = {}
    for tag, i1, i2, j1, j2 in opcodes:
        if tag == 'equal':
            for k in range(i2 - i1):
                per_timestep_idx = per_timestep_char_indices[i1 + k]
                bert_token_idx = bert_char_indices[j1 + k]
                per_timestep_to_bert_token_idx[per_timestep_idx] = bert_token_idx
    features_per_timestep = []
    check = []
    for i, per_token in enumerate(tokens_per_timestep):
        if i == 0:
            embedding = all_token_embeddings[0]
            check.append("cls")
        elif per_token in ('<pad>', '|'):
            embedding = torch.zeros(all_token_embeddings.shape[-1]).to(inputs.input_values.device)
            check.append(0)
        else:
            if i in per_timestep_to_bert_token_idx:
                bert_idx = per_timestep_to_bert_token_idx[i]
                embedding = all_token_embeddings[bert_idx]
                check.append(tokens_bert[bert_idx])
            else:
                embedding = torch.zeros(all_token_embeddings.shape[-1]).to(inputs.input_values.device)
                check.append(0)
        features_per_timestep.append(embedding)
    features_per_timestep = torch.stack(features_per_timestep)  

    updated_check = check.copy()
    for i in range(len(check)):
        if check[i] == 0:
            left = i - 1
            right = i + 1
            left_found = False
            right_found = False

            while left >= 0:
                if check[left] != 0:
                    left_found = True
                    break
                left -= 1

            while right < len(check):
                if check[right] != 0:
                    right_found = True
                    break
                right += 1

            if left_found and right_found:
                if (i - left) <= (right - i):
                    nearest = left
                else:
                    nearest = right
            elif left_found:
                nearest = left
            elif right_found:
                nearest = right
            else:
                continue
            updated_check[i] = updated_check[nearest]
            features_per_timestep[i] = features_per_timestep[nearest]
    features_per_timestep = features_per_timestep.unsqueeze(0)
    return transcription, features_per_timestep, all_token_embeddings 


class MLP(nn.Module):
    def __init__(self, in_dim, hidden_size, out_dim):
        super().__init__()
        self.mlp = nn.Sequential(
            nn.Linear(in_dim, hidden_size),
            nn.LeakyReLU(0.2, True),
            nn.Linear(hidden_size, out_dim)
        )
    def forward(self, inputs):
        out = self.mlp(inputs)
        return out


class PeriodicPositionalEncoding(nn.Module):
    def __init__(self, d_model, dropout=0.1, period=20, max_seq_len=64): 
        super(PeriodicPositionalEncoding, self).__init__()
        self.dropout = nn.Dropout(p=dropout)
        pe = torch.zeros(period, d_model)
        position = torch.arange(0, period, dtype=torch.float).unsqueeze(1)
        div_term = torch.exp(torch.arange(0, d_model, 2).float() * (-math.log(10000.0) / d_model))
        pe[:, 0::2] = torch.sin(position * div_term)
        pe[:, 1::2] = torch.cos(position * div_term)
        pe = pe.unsqueeze(0) # (1, period, d_model)
        repeat_num = (max_seq_len//period) + 1
        pe = pe.repeat(1, repeat_num, 1) # (1, repeat_num, period, d_model)
        self.register_buffer('pe', pe)
    def forward(self, x):
        # print(self.pe.shape, x.shape)
        x = x + self.pe[:, :x.size(1), :]
        return self.dropout(x)
    

class CustomMultiheadAttention(nn.Module):
    def __init__(self, embed_dim, num_heads):
        super(CustomMultiheadAttention, self).__init__()
        self.num_heads = num_heads
        self.head_dim = embed_dim // num_heads
        assert self.head_dim * num_heads == embed_dim, "embed_dim must be divisible by num_heads"

        self.query_proj = nn.Linear(embed_dim, embed_dim)
        self.key_proj = nn.Linear(embed_dim, embed_dim)
        self.value_proj = nn.Linear(embed_dim, embed_dim)
        self.out_proj = nn.Linear(embed_dim, embed_dim)

    def forward(self, query, key, value):
        batch_size, seq_len, embed_dim = query.size()

        # Linear projections
        Q = self.query_proj(query).view(batch_size, seq_len, self.num_heads, self.head_dim).transpose(1, 2)
        K = self.key_proj(key).view(batch_size, seq_len, self.num_heads, self.head_dim).transpose(1, 2)
        V = self.value_proj(value).view(batch_size, seq_len, self.num_heads, self.head_dim).transpose(1, 2)

        # Scaled dot-product attention
        scores = torch.matmul(Q, K.transpose(-2, -1)) / (self.head_dim ** 0.5)
        attn_weights = F.softmax(scores, dim=-1)  # Shape: (batch_size, num_heads, seq_len, seq_len)
        attn_output = torch.matmul(attn_weights, V)

        # Concatenate heads
        attn_output = attn_output.transpose(1, 2).contiguous().view(batch_size, seq_len, embed_dim)

        # Apply final linear projection
        output = self.out_proj(attn_output)
        return output, attn_weights  # Return the per-head attention weights


def reinitialize_weights(module):
    for submodule in module.modules():
        weight = getattr(submodule, 'weight', None)
        if weight is not None and isinstance(weight, torch.Tensor) and weight.dim() >= 2:
            torch.nn.init.xavier_uniform_(weight)
            print("init")
        elif weight is not None and isinstance(weight, torch.Tensor):
            torch.nn.init.normal_(weight, mean=0.0, std=0.02)
            print("init")
        bias = getattr(submodule, 'bias', None)
        if bias is not None and isinstance(bias, torch.Tensor):
            torch.nn.init.zeros_(bias)
        

class WrapedMotionCNN(nn.Module):
    def __init__(self, args):
        super(WrapedMotionCNN, self).__init__()
        self.args = args
        encoder_layer = nn.TransformerEncoderLayer(
            d_model=self.args.motion_f,  # This should match the hidden size of the Wav2Vec2 model
            nhead=8,      # Number of attention heads
            dim_feedforward=self.args.hidden_size,  # The feedforward network dimension
            dropout=0.1,   # Dropout rate
            batch_first=True
        )
        args_top = copy.deepcopy(self.args)
        args_top.vae_layer = 3
        args_top.vae_length = self.args.motion_f
        args_top.vae_test_dim = self.args.motion_dim
        self.feature_extractor = VQEncoderV6(args_top) 

     
        args_top = copy.deepcopy(self.args)
        args_top.vae_layer = 6
        args_top.vae_length = self.args.motion_f
        args_top.vae_test_dim = self.args.motion_dim + self.args.motion_f
      
        self.encoder_cnn = VQEncoderV6(args_top) 
        self.pos_encoding = PeriodicPositionalEncoding(d_model=self.args.motion_f, period=20, max_seq_len=64, dropout=0.0)
        self.encoder_trans = nn.TransformerEncoder(encoder_layer, num_layers=1) # Wav2Vec2Model.from_pretrained('facebook/wav2vec2-base-960h').encoder

    def forward(self, 
        inputs,
        attention_mask: Optional[torch.Tensor] = None,
        mask_time_indices: Optional[torch.FloatTensor] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None
        ):
        low_level = self.feature_extractor(inputs)
        # print(low_level.shape, inputs.shape)
        hidden_states = self.encoder_cnn(torch.cat([low_level.detach(), inputs], dim=-1))
        hidden_states = self.pos_encoding(hidden_states)
        hidden_states = self.encoder_trans(hidden_states)
        return {
            "low_level": low_level,
            "high_level": hidden_states
        }
        

class WrapedWav2Vec(nn.Module):
    def __init__(self):
        super(WrapedWav2Vec, self).__init__()
        self.feature_extractor = Wav2Vec2Model.from_pretrained('facebook/wav2vec2-base-960h').feature_extractor
        self.feature_projection = Wav2Vec2Model.from_pretrained('facebook/wav2vec2-base-960h').feature_projection
        self.encoder = Wav2Vec2Model.from_pretrained('facebook/wav2vec2-base-960h').encoder
        # print(self.encoder)
        self.encoder.layers = self.encoder.layers[:1]
        # print(self.encoder)
        self.proj_down = nn.Linear(768,512)
        # print(bug)
    
    def forward(self, 
        inputs,
        attention_mask: Optional[torch.Tensor] = None,
        mask_time_indices: Optional[torch.FloatTensor] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None
        ):
        finetune_audio_low = self.feature_extractor(inputs).transpose(1, 2)
        hidden_states, _ = self.feature_projection(finetune_audio_low.detach())
        encoder_outputs = self.encoder(
            hidden_states,
            attention_mask=attention_mask,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
        )
        hidden_states = encoder_outputs[0]
        hidden_states = self.proj_down(hidden_states)
        # print(hidden_states.shape)
        return {
            "low_level": finetune_audio_low,
            "high_level": hidden_states
        }


class JointEmbedding(nn.Module):
    def __init__(self, args):
        super(JointEmbedding, self).__init__()
        self.args = args.model   
        self.audio_processor = Wav2Vec2Processor.from_pretrained('facebook/wav2vec2-base-960h')
        self.audio_encoder = Wav2Vec2Model.from_pretrained('facebook/wav2vec2-base-960h')
        self.config_wav2vec = Wav2Vec2Config.from_pretrained('facebook/wav2vec2-base-960h')
        # self.audio_encoder_fintune = Wav2Vec2Model.from_pretrained('facebook/wav2vec2-base-960h').feature_extractor
        self.audio_encoder_fintune = WrapedWav2Vec()
        # print(self.audio_encoder_fintune)
        # print(bug)
        
        self.asr = Wav2Vec2ForCTC.from_pretrained('facebook/wav2vec2-base-960h')
        self.bert_tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
        self.bert_model = BertModel.from_pretrained('bert-base-uncased')

        self.audio_low_mapping = MLP(512+512, self.args.hidden_size, self.args.audio_f)
        self.audio_high_mapping = MLP(512+512+512, self.args.hidden_size, self.args.audio_f)
        # self.audio_down_proj_1 = nn.Linear(768, 512)
        self.audio_down_proj_2 = nn.Linear(768, 512)
        self.audio_down_proj_3 = nn.Linear(768, 512)
        # self.audio_sa = nn.MultiheadAttention(embed_dim=self.args.audio_f, num_heads=8, batch_first=True)
        self.audio_sa = CustomMultiheadAttention(embed_dim=self.args.audio_f, num_heads=8,)

        self.motion_encoder_fintune = WrapedMotionCNN(self.args)
        self.motion_low_mapping = MLP(self.args.motion_f, self.args.hidden_size, self.args.motion_f)
        self.motion_high_mapping = MLP(self.args.motion_f, self.args.hidden_size, self.args.motion_f)
        # self.motion_sa = nn.MultiheadAttention(embed_dim=self.args.audio_f, num_heads=8, batch_first=True)
        self.motion_sa = CustomMultiheadAttention(embed_dim=self.args.audio_f, num_heads=8,)
        
        self.down_sample = 2 # for downsample 30 fps motion to 15
        self.smplx_model = None
        self.get_motion_reps = None
        self.audio_to_time_aligned_text_features = audio_to_time_aligned_text_features
        self.low_temp = nn.Parameter(torch.tensor(0.07))
        self.low_level_loss_fn = None
        self.high_temp = nn.Parameter(torch.tensor(0.07))
        self.high_level_loss_fn = None

    def _reset_parameters(self):
        nn.init.normal_(self.mask_embeddings, 0, self.args.hidden_size ** -0.5)
    
    def forward(self, in_audio=None, in_motion=None, cached_audio_low=None, cached_audio_high=None, cached_rep15d=None):
        # motion feature
        if cached_rep15d is not None:
            in_motion = cached_rep15d[:,::self.down_sample]
        else:
            in_motion = self.get_motion_reps(in_motion, self.smplx_model)["rep15d"][:,::self.down_sample]
        
        motion_features = self.motion_encoder_fintune(in_motion)
        raw_motion_low = motion_features["low_level"] # self.motion_encoder_low(in_motion)
        raw_motion_high = motion_features["high_level"] # self.motion_encoder_high(torch.cat([raw_motion_low.detach(), in_motion], dim=-1))

        motion_low = self.motion_low_mapping(raw_motion_low)
        motion_high = self.motion_high_mapping(raw_motion_high)
        motion_high_att, motion_high_weight = self.motion_sa(motion_high, motion_high, motion_high)
        bs, n, c = motion_high.shape
        # print("a:", motion_high_weight[:, :, 0, :].unsqueeze(2).shape, "b:", motion_high.transpose(1, 2).view(bs, 8, c//8, n).shape)
        motion_high_att_before_sum = motion_high_weight[:, :, 0, :].unsqueeze(2) * motion_high.transpose(1, 2).view(bs, 8, c//8, n)
        motion_high_att_before_sum = motion_high_att_before_sum.reshape(bs, c, n).transpose(1, 2)
        motion_low = F.interpolate(motion_low.transpose(1, 2), scale_factor=2, mode='linear', align_corners=True).transpose(1, 2)
        motion_high_att = F.interpolate(motion_high_att.transpose(1, 2), scale_factor=2, mode='linear', align_corners=True).transpose(1, 2)
        motion_high_att_before_sum = F.interpolate(motion_high_att_before_sum.transpose(1, 2), scale_factor=2, mode='linear', align_corners=True).transpose(1, 2)
        motion_cls = motion_high_att[:, 0]

        # audio feature
        if cached_audio_low is not None:
            raw_audio_low = cached_audio_low
            raw_audio_high = torch.cat([self.audio_down_proj_2(cached_audio_high[:, :, :768]), self.audio_down_proj_3(cached_audio_high[:, :, 768:])], dim=-1)
            
            audio_list = [i.cpu().numpy() for i in in_audio]
            inputs = self.audio_processor(audio_list, sampling_rate=16000, return_tensors="pt", padding=True).to(in_audio.device)
            finetune_audio = self.audio_encoder_fintune(inputs.input_values)
            finetune_audio_low, finetune_audio_high = finetune_audio["low_level"], finetune_audio["high_level"]
            diff = raw_audio_low.shape[1] - finetune_audio_low.shape[1]
            if diff > 0:
                finetune_audio_low = torch.cat([finetune_audio_low, finetune_audio_low[:, -diff:]], dim=1)
            diff = raw_audio_high.shape[1] - finetune_audio_high.shape[1]
            if diff > 0:
                finetune_audio_high = torch.cat([finetune_audio_high, finetune_audio_high[:, -diff:]], dim=1)
            raw_audio_low = torch.cat([raw_audio_low, finetune_audio_low], dim=-1) # bs, t, 1024
        else:
            print("error! must have cached audio in training")
        
        # print(raw_audio_low.shape, raw_audio_high.shape, "before")

        raw_audio_low = F.interpolate(raw_audio_low.transpose(1, 2), scale_factor=30/50, mode='linear', align_corners=True).transpose(1, 2) 
        raw_audio_high = F.interpolate(raw_audio_high.transpose(1, 2), scale_factor=15/50, mode='linear', align_corners=True).transpose(1, 2)
        finetune_audio_high = F.interpolate(finetune_audio_high.transpose(1, 2), scale_factor=15/50, mode='linear', align_corners=True).transpose(1, 2)  
        # print(raw_audio_low.shape, raw_audio_high.shape, "after")
        audio_low = self.audio_low_mapping(raw_audio_low)
        raw_audio_high = torch.cat([finetune_audio_high, raw_audio_high], dim=-1)
        # print(finetune_audio_high.shape, raw_audio_high.shape)
        audio_high = self.audio_high_mapping(raw_audio_high)
        audio_high_att, audio_high_weight = self.audio_sa(audio_high, audio_high, audio_high)
        bs, n, c = audio_high.shape
        audio_high_att_before_sum = audio_high_weight[:, :, 0, :].unsqueeze(2) * audio_high.transpose(1, 2).view(bs, 8, c//8, n)
        audio_high_att_before_sum = audio_high_att_before_sum.reshape(bs, c, n).transpose(1, 2)
        audio_high_att = F.interpolate(audio_high_att.transpose(1, 2), scale_factor=2, mode='linear', align_corners=True).transpose(1, 2)
        audio_high_att_before_sum = F.interpolate(audio_high_att_before_sum.transpose(1, 2), scale_factor=2, mode='linear', align_corners=True).transpose(1, 2)
        audio_cls = audio_high_att[:, 0]
        # low_infonce, low_acc = self.low_level_loss_fn(audio_low, motion_low, learned_temp=self.low_temp)
        
        # fix temp to 0.1 is better than learned temp
        low_infonce, low_acc = self.low_level_loss_fn(audio_low, motion_low)
        high_infonce = self.high_level_loss_fn(audio_cls, motion_cls)
        return {
            "audio_low":audio_low,
            "audio_high":audio_high_att,
            "audio_cls":audio_cls,
            "audio_high_weight":audio_high_att_before_sum,
            "motion_low":motion_low,
            "motion_high":motion_high_att,
            "motion_cls":motion_cls,
            "motion_high_weight":motion_high_att_before_sum,
            "low_level_loss": [low_infonce, low_acc],
            "high_level_loss": high_infonce
            }

    def get_audio_features(self, in_audio):
        audio_list = [i.cpu().numpy() for i in in_audio]
        inputs = self.audio_processor(audio_list, sampling_rate=16000, return_tensors="pt", padding=True).to(in_audio.device)
        raw_audio_low = self.audio_encoder.feature_extractor(inputs.input_values).transpose(1, 2)
        raw_audio_low = raw_audio_low
            
        finetune_audio = self.audio_encoder_fintune(inputs.input_values)
        finetune_audio_low, finetune_audio_high = finetune_audio["low_level"], finetune_audio["high_level"]
        diff = raw_audio_low.shape[1] - finetune_audio_low.shape[1]
        if diff > 0:
            finetune_audio_low = torch.cat([finetune_audio_low, finetune_audio_low[:, -diff:]], dim=1)
        raw_audio_low = torch.cat([raw_audio_low, finetune_audio_low], dim=-1)

        raw_audio_high = self.audio_encoder(inputs.input_values).last_hidden_state
        
        diff = raw_audio_high.shape[1] - finetune_audio_high.shape[1]
        if diff > 0:
            finetune_audio_high = torch.cat([finetune_audio_high, finetune_audio_high[:, -diff:]], dim=1)
        # print(raw_audio_high.shape, finetune_audio_high.shape)

        _, bert_time_aligned_text, _ = audio_to_time_aligned_text_features(inputs, self.audio_processor, self.asr, self.bert_tokenizer, self.bert_model)
        raw_audio_high = torch.cat([raw_audio_high, bert_time_aligned_text], dim=2)
        raw_audio_high = torch.cat([self.audio_down_proj_2(raw_audio_high[:, :, :768]), self.audio_down_proj_3(raw_audio_high[:, :, 768:])], dim=-1)

        raw_audio_low = F.interpolate(raw_audio_low.transpose(1, 2), scale_factor=30/50, mode='linear', align_corners=True).transpose(1, 2) 
        raw_audio_high = F.interpolate(raw_audio_high.transpose(1, 2), scale_factor=15/50, mode='linear', align_corners=True).transpose(1, 2)
        finetune_audio_high = F.interpolate(finetune_audio_high.transpose(1, 2), scale_factor=15/50, mode='linear', align_corners=True).transpose(1, 2) 
        
        if raw_audio_low.shape[1] % 2 == 1:
            raw_audio_low = torch.cat([raw_audio_low, raw_audio_low[:, -1:]], dim=1)
        diff = raw_audio_low[:, ::2].shape[1] - raw_audio_high.shape[1]
        if diff > 0:
            raw_audio_high = torch.cat([raw_audio_high, raw_audio_high[:, -diff:]], dim=1)
            finetune_audio_high = torch.cat([finetune_audio_high, finetune_audio_high[:, -diff:]], dim=1)

        audio_low = self.audio_low_mapping(raw_audio_low)
        # print(audio_low.shape[1]//2, raw_audio_high.shape[1])
        raw_audio_high = torch.cat([finetune_audio_high, raw_audio_high], dim=-1)
        audio_high = self.audio_high_mapping(raw_audio_high)
        audio_high_att, audio_high_weight = self.audio_sa(audio_high, audio_high, audio_high)
        bs, n, c = audio_high.shape
        audio_high_att_before_sum = audio_high_weight[:, :, 0, :].unsqueeze(2) * audio_high.transpose(1, 2).view(bs, 8, c//8, n)
        audio_high_att_before_sum = audio_high_att_before_sum.reshape(bs, c, n).transpose(1, 2)
        audio_high_att = F.interpolate(audio_high_att.transpose(1, 2), scale_factor=2, mode='linear', align_corners=True).transpose(1, 2)
        audio_high_att_before_sum = F.interpolate(audio_high_att_before_sum.transpose(1, 2), scale_factor=2, mode='linear', align_corners=True).transpose(1, 2)
        audio_cls = audio_high_att[:, 0]
        return {
            "audio_low":audio_low,
            "audio_high":audio_high_att,
            "audio_cls":audio_cls,
            "audio_high_weight":audio_high_att_before_sum,
            }

    def get_motion_features(self, in_motion):
        original_length = in_motion.shape[1]
         
        in_motion = self.get_motion_reps(in_motion, self.smplx_model)["rep15d"][:,::self.down_sample]
        motion_features = self.motion_encoder_fintune(in_motion)
        raw_motion_low = motion_features["low_level"] # self.motion_encoder_low(in_motion)
        raw_motion_high = motion_features["high_level"] # self.motion_encoder_high(torch.cat([raw_motion_low.detach(), in_motion], dim=-1))
        motion_low = self.motion_low_mapping(raw_motion_low)
        motion_high = self.motion_high_mapping(raw_motion_high)
        
        motion_high_att, motion_high_weight = self.motion_sa(motion_high, motion_high, motion_high)
        bs, n, c = motion_high.shape
        motion_high_att_before_sum = motion_high_weight[:, :, 0, :].unsqueeze(2) * motion_high.transpose(1, 2).view(bs, 8, c//8, n)
        motion_high_att_before_sum = motion_high_att_before_sum.reshape(bs, c, n).transpose(1, 2)
        motion_low = F.interpolate(motion_low.transpose(1, 2), scale_factor=2, mode='linear', align_corners=True).transpose(1, 2)
        motion_high_att = F.interpolate(motion_high_att.transpose(1, 2), scale_factor=2, mode='linear', align_corners=True).transpose(1, 2)
        motion_high_att_before_sum = F.interpolate(motion_high_att_before_sum.transpose(1, 2), scale_factor=2, mode='linear', align_corners=True).transpose(1, 2)
        
        # if motion_low.shape[1] - 
        motion_low = motion_low[:, :original_length]
        motion_high_att = motion_high_att[:, :original_length]
        motion_high_att_before_sum = motion_high_att_before_sum[:, :original_length]

        motion_cls = motion_high_att[:, 0]
        # print(original_length, motion_low.shape, motion_high_att.shape, motion_high_att_before_sum.shape)
        return {
            "motion_low":motion_low,
            "motion_high":motion_high_att,
            "motion_cls":motion_cls,
            "motion_high_weight":motion_high_att_before_sum,
            }