File size: 19,758 Bytes
e34aada |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 |
import torch
from torch import nn
import torch.nn.functional as F
import torchvision
import math
import numpy as np
import copy
from modules.real3d.facev2v_warp.network2 import AppearanceFeatureExtractor, CanonicalKeypointDetector, PoseExpressionEstimator, MotionFieldEstimator, Generator
from modules.real3d.facev2v_warp.func_utils import transform_kp, make_coordinate_grid_2d, apply_imagenet_normalization
from modules.real3d.facev2v_warp.losses import PerceptualLoss, GANLoss, FeatureMatchingLoss, EquivarianceLoss, KeypointPriorLoss, HeadPoseLoss, DeformationPriorLoss
from utils.commons.image_utils import erode, dilate
from utils.commons.hparams import hparams
class Hopenet(nn.Module):
# Hopenet with 3 output layers for yaw, pitch and roll
# Predicts Euler angles by binning and regression with the expected value
def __init__(self, block, layers, num_bins):
self.inplanes = 64
super(Hopenet, self).__init__()
self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3, bias=False)
self.bn1 = nn.BatchNorm2d(64)
self.relu = nn.ReLU(inplace=True)
self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
self.layer1 = self._make_layer(block, 64, layers[0])
self.layer2 = self._make_layer(block, 128, layers[1], stride=2)
self.layer3 = self._make_layer(block, 256, layers[2], stride=2)
self.layer4 = self._make_layer(block, 512, layers[3], stride=2)
self.avgpool = nn.AvgPool2d(7)
self.fc_yaw = nn.Linear(512 * block.expansion, num_bins)
self.fc_pitch = nn.Linear(512 * block.expansion, num_bins)
self.fc_roll = nn.Linear(512 * block.expansion, num_bins)
# Vestigial layer from previous experiments
self.fc_finetune = nn.Linear(512 * block.expansion + 3, 3)
self.idx_tensor = torch.FloatTensor(list(range(num_bins))).unsqueeze(0).cuda()
self.n_bins = num_bins
for m in self.modules():
if isinstance(m, nn.Conv2d):
n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
m.weight.data.normal_(0, math.sqrt(2.0 / n))
elif isinstance(m, nn.BatchNorm2d):
m.weight.data.fill_(1)
m.bias.data.zero_()
def _make_layer(self, block, planes, blocks, stride=1):
downsample = None
if stride != 1 or self.inplanes != planes * block.expansion:
downsample = nn.Sequential(
nn.Conv2d(self.inplanes, planes * block.expansion, kernel_size=1, stride=stride, bias=False),
nn.BatchNorm2d(planes * block.expansion),
)
layers = []
layers.append(block(self.inplanes, planes, stride, downsample))
self.inplanes = planes * block.expansion
for i in range(1, blocks):
layers.append(block(self.inplanes, planes))
return nn.Sequential(*layers)
def forward(self, x):
x = self.conv1(x)
x = self.bn1(x)
x = self.relu(x)
x = self.maxpool(x)
x = self.layer1(x)
x = self.layer2(x)
x = self.layer3(x)
x = self.layer4(x)
x = self.avgpool(x)
x = x.view(x.size(0), -1)
real_yaw = self.fc_yaw(x)
real_pitch = self.fc_pitch(x)
real_roll = self.fc_roll(x)
real_yaw = torch.softmax(real_yaw, dim=1)
real_pitch = torch.softmax(real_pitch, dim=1)
real_roll = torch.softmax(real_roll, dim=1)
real_yaw = (real_yaw * self.idx_tensor).sum(dim=1)
real_pitch = (real_pitch * self.idx_tensor).sum(dim=1)
real_roll = (real_roll * self.idx_tensor).sum(dim=1)
real_yaw = (real_yaw - self.n_bins // 2) * 3 * np.pi / 180
real_pitch = (real_pitch - self.n_bins // 2) * 3 * np.pi / 180
real_roll = (real_roll - self.n_bins // 2) * 3 * np.pi / 180
return real_yaw, real_pitch, real_roll
class Transform:
"""
Random tps transformation for equivariance constraints.
reference: FOMM
"""
def __init__(self, bs, sigma_affine=0.05, sigma_tps=0.005, points_tps=5):
noise = torch.normal(mean=0, std=sigma_affine * torch.ones([bs, 2, 3]))
self.theta = noise + torch.eye(2, 3).view(1, 2, 3)
self.bs = bs
self.control_points = make_coordinate_grid_2d((points_tps, points_tps))
self.control_points = self.control_points.unsqueeze(0)
self.control_params = torch.normal(mean=0, std=sigma_tps * torch.ones([bs, 1, points_tps ** 2]))
def transform_frame(self, frame):
grid = make_coordinate_grid_2d(frame.shape[2:]).unsqueeze(0)
grid = grid.view(1, frame.shape[2] * frame.shape[3], 2)
grid = self.warp_coordinates(grid).view(self.bs, frame.shape[2], frame.shape[3], 2)
return F.grid_sample(frame, grid, align_corners=True, padding_mode="reflection")
def warp_coordinates(self, coordinates):
theta = self.theta.type(coordinates.type())
theta = theta.unsqueeze(1)
transformed = torch.matmul(theta[:, :, :, :2], coordinates.unsqueeze(-1)) + theta[:, :, :, 2:]
transformed = transformed.squeeze(-1)
control_points = self.control_points.type(coordinates.type())
control_params = self.control_params.type(coordinates.type())
distances = coordinates.view(coordinates.shape[0], -1, 1, 2) - control_points.view(1, 1, -1, 2)
distances = torch.abs(distances).sum(-1)
result = distances ** 2
result = result * torch.log(distances + 1e-6)
result = result * control_params
result = result.sum(dim=2).view(self.bs, coordinates.shape[1], 1)
transformed = transformed + result
return transformed
class WarpBasedTorsoModel(nn.Module):
def __init__(self, model_scale='small'):
super().__init__()
self.appearance_extractor = AppearanceFeatureExtractor(model_scale)
self.canonical_kp_detector = CanonicalKeypointDetector(model_scale)
self.pose_exp_estimator = PoseExpressionEstimator(model_scale)
self.motion_field_estimator = MotionFieldEstimator(model_scale)
self.deform_based_generator = Generator()
self.pretrained_hopenet = Hopenet(torchvision.models.resnet.Bottleneck, [3, 4, 6, 3], num_bins=66).cuda()
pretrained_path = "/home/tiger/nfs/myenv/cache/useful_ckpts/hopenet_robust_alpha1.pkl" # https://drive.google.com/open?id=1m25PrSE7g9D2q2XJVMR6IA7RaCvWSzCR
self.pretrained_hopenet.load_state_dict(torch.load(pretrained_path, map_location=torch.device("cpu")))
self.pretrained_hopenet.requires_grad_(False)
self.pose_loss_fn = HeadPoseLoss() # 20
self.equivariance_loss_fn = EquivarianceLoss() # 20
self.keypoint_prior_loss_fn = KeypointPriorLoss()# 10
self.deform_prior_loss_fn = DeformationPriorLoss() # 5
def forward(self, torso_src_img, src_img, drv_img, cal_loss=False):
# predict cano keypoint
cano_keypoint = self.canonical_kp_detector(src_img)
# predict src_pose and drv_pose
transform_fn = Transform(drv_img.shape[0])
transformed_drv_img = transform_fn.transform_frame(drv_img)
cat_imgs = torch.cat([src_img, drv_img, transformed_drv_img], dim=0)
yaw, pitch, roll, t, delta = self.pose_exp_estimator(cat_imgs)
[yaw_s, yaw_d, yaw_tran], [pitch_s, pitch_d, pitch_tran], [roll_s, roll_d, roll_tran] = (
torch.chunk(yaw, 3, dim=0),
torch.chunk(pitch, 3, dim=0),
torch.chunk(roll, 3, dim=0),
)
[t_s, t_d, t_tran], [delta_s, delta_d, delta_tran] = (
torch.chunk(t, 3, dim=0),
torch.chunk(delta, 3, dim=0),
)
kp_s, Rs = transform_kp(cano_keypoint, yaw_s, pitch_s, roll_s, t_s, delta_s)
kp_d, Rd = transform_kp(cano_keypoint, yaw_d, pitch_d, roll_d, t_d, delta_d)
# deform the torso img
torso_appearance_feats = self.appearance_extractor(torso_src_img)
deformation, occlusion = self.motion_field_estimator(torso_appearance_feats, kp_s, kp_d, Rs, Rd)
deformed_torso_img = self.deform_based_generator(torso_appearance_feats, deformation, occlusion)
ret = {'kp_src': kp_s, 'kp_drv': kp_d}
if cal_loss:
losses = {}
with torch.no_grad():
self.pretrained_hopenet.eval()
real_yaw, real_pitch, real_roll = self.pretrained_hopenet(F.interpolate(apply_imagenet_normalization(cat_imgs), size=(224, 224)))
pose_loss = self.pose_loss_fn(yaw, pitch, roll, real_yaw, real_pitch, real_roll)
losses['facev2v/pose_pred_loss'] = pose_loss
kp_tran, _ = transform_kp(cano_keypoint, yaw_tran, pitch_tran, roll_tran, t_tran, delta_tran)
reverse_kp = transform_fn.warp_coordinates(kp_tran[:, :, :2])
equivariance_loss = self.equivariance_loss_fn(kp_d, reverse_kp)
losses['facev2v/equivariance_loss'] = equivariance_loss
keypoint_prior_loss = self.keypoint_prior_loss_fn(kp_d)
losses['facev2v/keypoint_prior_loss'] = keypoint_prior_loss
deform_prior_loss = self.deform_prior_loss_fn(delta_d)
losses['facev2v/deform_prior_loss'] = deform_prior_loss
ret['losses'] = losses
return deformed_torso_img, ret
class WarpBasedTorsoModelMediaPipe(nn.Module):
def __init__(self, model_scale='small'):
super().__init__()
self.hparams = copy.deepcopy(hparams)
if hparams.get("torso_inp_mode", "rgb") == 'rgb_alpha':
torso_in_dim = 5
else:
torso_in_dim = 3
self.appearance_extractor = AppearanceFeatureExtractor(in_dim=torso_in_dim, model_scale=model_scale)
self.motion_field_estimator = MotionFieldEstimator(model_scale, input_channels=32+2, num_keypoints=self.hparams['torso_kp_num']) # 32 channel appearance channel, and 3 channel for segmap
# self.motion_field_estimator = MotionFieldEstimator(model_scale, input_channels=32+2, num_keypoints=9) # 32 channel appearance channel, and 3 channel for segmap
self.deform_based_generator = Generator()
self.occlusion_2_predictor = nn.Sequential(*[
nn.Conv2d(64+1, 32, 3, 1, 1),
nn.ReLU(),
nn.Conv2d(32, 32, 3, 1, 1),
nn.ReLU(),
nn.Conv2d(32, 1, 3, 1, 1),
nn.Sigmoid()
])
# V2, 先warp, 再mean
def forward(self, torso_src_img, segmap, kp_s, kp_d, tgt_head_img, tgt_head_weights, cal_loss=False, target_torso_mask=None):
"""
kp_s, kp_d, [b, 68, 3], within the range of [-1,1]
"""
if hparams.get("torso_inp_mode", "rgb") == 'rgb_alpha':
torso_segmap = torch.nn.functional.interpolate(segmap[:,[2,4]].float(), size=(torso_src_img.shape[-2],torso_src_img.shape[-1]), mode='bilinear', align_corners=False, antialias=False) # see tasks/eg3ds/loss_utils/segment_loss/mp_segmenter.py for the segmap convention
torso_src_img = torch.cat([torso_src_img, torso_segmap], dim=1)
torso_appearance_feats = self.appearance_extractor(torso_src_img) # [B, C, D, H, W]
torso_segmap = torch.nn.functional.interpolate(segmap[:,[2,4]].float(), size=(64,64), mode='bilinear', align_corners=False, antialias=False) # see tasks/eg3ds/loss_utils/segment_loss/mp_segmenter.py for the segmap convention
torso_mask = torso_segmap.sum(dim=1).unsqueeze(1) # [b, 1, ,h, w]
torso_mask = dilate(torso_mask, ksize=self.hparams.get("torso_mask_dilate_ksize", 7))
if self.hparams.get("mul_torso_mask", True):
torso_appearance_feats = torso_appearance_feats * torso_mask.unsqueeze(1)
motion_inp_appearance_feats = torch.cat([torso_appearance_feats, torso_segmap.unsqueeze(2).repeat([1,1,torso_appearance_feats.shape[2],1,1])], dim=1)
if self.hparams['torso_kp_num'] == 4:
kp_s = kp_s[:,[0,8,16,27],:]
kp_d = kp_d[:,[0,8,16,27],:]
elif self.hparams['torso_kp_num'] == 9:
kp_s = kp_s[:,[0, 3, 6, 8, 10, 13, 16, 27, 33],:]
kp_d = kp_d[:,[0, 3, 6, 8, 10, 13, 16, 27, 33],:]
else:
raise NotImplementedError()
# deform the torso img
Rs = torch.eye(3, 3).unsqueeze(0).repeat([kp_s.shape[0], 1, 1]).to(kp_s.device)
Rd = torch.eye(3, 3).unsqueeze(0).repeat([kp_d.shape[0], 1, 1]).to(kp_d.device)
deformation, occlusion, occlusion_2 = self.motion_field_estimator(motion_inp_appearance_feats, kp_s, kp_d, Rs, Rd, tgt_head_img, tgt_head_weights)
motion_estimator_grad_scale_factor = 0.1
# motion_estimator_grad_scale_factor = 1.0
deformation = deformation * motion_estimator_grad_scale_factor + deformation.detach() * (1-motion_estimator_grad_scale_factor)
# occlusion, a 0~1 mask that predict the segment map of warped torso, used in oclcusion-aware decoder
occlusion = occlusion * motion_estimator_grad_scale_factor + occlusion.detach() * (1-motion_estimator_grad_scale_factor)
# occlusion_2, a 0~1 mask that predict the segment map of warped torso, but is used in alpha-blending
occlusion_2 = occlusion_2 * motion_estimator_grad_scale_factor + occlusion_2.detach() * (1-motion_estimator_grad_scale_factor)
ret = {'kp_src': kp_s, 'kp_drv': kp_d, 'occlusion': occlusion, 'occlusion_2': occlusion_2}
deformed_torso_img, deformed_torso_hid = self.deform_based_generator(torso_appearance_feats, deformation, occlusion, return_hid=True)
ret['deformed_torso_hid'] = deformed_torso_hid
occlusion_2 = self.occlusion_2_predictor(torch.cat([deformed_torso_hid, F.interpolate(occlusion_2, size=(256,256), mode='bilinear')], dim=1))
ret['occlusion_2'] = occlusion_2
alphas = occlusion_2.clamp(1e-5, 1 - 1e-5)
if target_torso_mask is None:
ret['losses'] = {
'facev2v/occlusion_reg_l1': occlusion.mean(),
'facev2v/occlusion_2_reg_l1': occlusion_2.mean(),
'facev2v/occlusion_2_weights_entropy': torch.mean(- alphas * torch.log2(alphas) - (1 - alphas) * torch.log2(1 - alphas)), # you can visualize this fn at https://www.desmos.com/calculator/rwbs7bruvj?lang=zh-TW
}
else:
non_target_torso_mask_1 = torch.nn.functional.interpolate((~target_torso_mask).unsqueeze(1).float(), size=occlusion.shape[-2:])
non_target_torso_mask_2 = torch.nn.functional.interpolate((~target_torso_mask).unsqueeze(1).float(), size=occlusion_2.shape[-2:])
ret['losses'] = {
'facev2v/occlusion_reg_l1': self.masked_l1_reg_loss(occlusion, non_target_torso_mask_1.bool(), masked_weight=1, unmasked_weight=self.hparams['torso_occlusion_reg_unmask_factor']),
'facev2v/occlusion_2_reg_l1': self.masked_l1_reg_loss(occlusion_2, non_target_torso_mask_2.bool(), masked_weight=1, unmasked_weight=self.hparams['torso_occlusion_reg_unmask_factor']),
'facev2v/occlusion_2_weights_entropy': torch.mean(- alphas * torch.log2(alphas) - (1 - alphas) * torch.log2(1 - alphas)), # you can visualize this fn at https://www.desmos.com/calculator/rwbs7bruvj?lang=zh-TW
}
# if self.hparams.get("fuse_with_deform_source"):
# B, _, H, W = deformed_torso_img.shape
# deformation_256 = F.interpolate(deformation.mean(dim=1).permute(0,3,1,2), size=256, mode='bilinear',antialias=True).permute(0,2,3,1)[...,:2]
# deformed_source_torso_img = F.grid_sample(torso_src_img, deformation_256, align_corners=True).view(B, -1, H, W)
# occlusion_256 = F.interpolate(occlusion, size=256, antialias=True, mode='bilinear').reshape([B,1,H,W])
# # deformed_torso_img = deformed_torso_img * (1 - occlusion_256[:,0]) + deformed_source_torso_img[:,0] * occlusion_256[:,0]
# deformed_torso_img = deformed_torso_img * (1 - occlusion_256) + deformed_source_torso_img * occlusion_256
return deformed_torso_img, ret
def masked_l1_reg_loss(self, img_pred, mask, masked_weight=0.01, unmasked_weight=0.001, mode='l1'):
# 对raw图像,因为deform的原因背景没法全黑,导致这部分mse过高,我们将其mask掉,只计算人脸部分
masked_weight = 1.0
weight_mask = mask.float() * masked_weight + (~mask).float() * unmasked_weight
if mode == 'l1':
error = (img_pred).abs().sum(dim=1) * weight_mask
else:
error = (img_pred).pow(2).sum(dim=1) * weight_mask
loss = error.mean()
return loss
@torch.no_grad()
def infer_forward_stage1(self, torso_src_img, segmap, kp_s, kp_d, tgt_head_img, cal_loss=False):
"""
kp_s, kp_d, [b, 68, 3], within the range of [-1,1]
"""
kp_s = kp_s[:,[0,8,16,27],:]
kp_d = kp_d[:,[0,8,16,27],:]
torso_segmap = torch.nn.functional.interpolate(segmap[:,[2,4]].float(), size=(64,64), mode='bilinear', align_corners=False, antialias=False) # see tasks/eg3ds/loss_utils/segment_loss/mp_segmenter.py for the segmap convention
torso_appearance_feats = self.appearance_extractor(torso_src_img)
torso_mask = torso_segmap.sum(dim=1).unsqueeze(1) # [b, 1, ,h, w]
torso_mask = dilate(torso_mask, ksize=self.hparams.get("torso_mask_dilate_ksize", 7))
if self.hparams.get("mul_torso_mask", True):
torso_appearance_feats = torso_appearance_feats * torso_mask.unsqueeze(1)
motion_inp_appearance_feats = torch.cat([torso_appearance_feats, torso_segmap.unsqueeze(2).repeat([1,1,torso_appearance_feats.shape[2],1,1])], dim=1)
# deform the torso img
Rs = torch.eye(3, 3).unsqueeze(0).repeat([kp_s.shape[0], 1, 1]).to(kp_s.device)
Rd = torch.eye(3, 3).unsqueeze(0).repeat([kp_d.shape[0], 1, 1]).to(kp_d.device)
deformation, occlusion, occlusion_2 = self.motion_field_estimator(motion_inp_appearance_feats, kp_s, kp_d, Rs, Rd)
motion_estimator_grad_scale_factor = 0.1
deformation = deformation * motion_estimator_grad_scale_factor + deformation.detach() * (1-motion_estimator_grad_scale_factor)
occlusion = occlusion * motion_estimator_grad_scale_factor + occlusion.detach() * (1-motion_estimator_grad_scale_factor)
occlusion_2 = occlusion_2 * motion_estimator_grad_scale_factor + occlusion_2.detach() * (1-motion_estimator_grad_scale_factor)
ret = {'kp_src': kp_s, 'kp_drv': kp_d, 'occlusion': occlusion, 'occlusion_2': occlusion_2}
ret['torso_appearance_feats'] = torso_appearance_feats
ret['deformation'] = deformation
ret['occlusion'] = occlusion
return ret
@torch.no_grad()
def infer_forward_stage2(self, ret):
torso_appearance_feats = ret['torso_appearance_feats']
deformation = ret['deformation']
occlusion = ret['occlusion']
deformed_torso_img, deformed_torso_hid = self.deform_based_generator(torso_appearance_feats, deformation, occlusion, return_hid=True)
ret['deformed_torso_hid'] = deformed_torso_hid
return deformed_torso_img
if __name__ == '__main__':
from utils.nn.model_utils import num_params
import tqdm
model = WarpBasedTorsoModel('small')
model.cuda()
num_params(model)
for n, m in model.named_children():
num_params(m, model_name=n)
torso_ref_img = torch.randn([2, 3, 256, 256]).cuda()
ref_img = torch.randn([2, 3, 256, 256]).cuda()
mv_img = torch.randn([2, 3, 256, 256]).cuda()
out = model(torso_ref_img, ref_img, mv_img)
for i in tqdm.trange(100):
out_img, losses = model(torso_ref_img, ref_img, mv_img, cal_loss=True)
print(" ") |