File size: 7,448 Bytes
e34aada
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
from numpy import isin
import torch
import torch.nn as nn
from modules.audio2motion.transformer_base import *

DEFAULT_MAX_SOURCE_POSITIONS = 2000
DEFAULT_MAX_TARGET_POSITIONS = 2000


class TransformerEncoderLayer(nn.Module):
    def __init__(self, hidden_size, dropout, kernel_size=None, num_heads=2, norm='ln'):
        super().__init__()
        self.hidden_size = hidden_size
        self.dropout = dropout
        self.num_heads = num_heads
        self.op = EncSALayer(
            hidden_size, num_heads, dropout=dropout,
            attention_dropout=0.0, relu_dropout=dropout,
            kernel_size=kernel_size
            if kernel_size is not None else 9,
            padding='SAME',
            norm=norm, act='gelu'
            )

    def forward(self, x, **kwargs):
        return self.op(x, **kwargs)


######################
# fastspeech modules
######################
class LayerNorm(torch.nn.LayerNorm):
    """Layer normalization module.
    :param int nout: output dim size
    :param int dim: dimension to be normalized
    """

    def __init__(self, nout, dim=-1, eps=1e-5):
        """Construct an LayerNorm object."""
        super(LayerNorm, self).__init__(nout, eps=eps)
        self.dim = dim

    def forward(self, x):
        """Apply layer normalization.
        :param torch.Tensor x: input tensor
        :return: layer normalized tensor
        :rtype torch.Tensor
        """
        if self.dim == -1:
            return super(LayerNorm, self).forward(x)
        return super(LayerNorm, self).forward(x.transpose(1, -1)).transpose(1, -1)


class FFTBlocks(nn.Module):
    def __init__(self, hidden_size, num_layers, ffn_kernel_size=9, dropout=None,
                 num_heads=2, use_pos_embed=True, use_last_norm=True, norm='ln',
                 use_pos_embed_alpha=True):
        super().__init__()
        self.num_layers = num_layers
        embed_dim = self.hidden_size = hidden_size
        self.dropout = dropout if dropout is not None else 0.1
        self.use_pos_embed = use_pos_embed
        self.use_last_norm = use_last_norm
        if use_pos_embed:
            self.max_source_positions = DEFAULT_MAX_TARGET_POSITIONS
            self.padding_idx = 0
            self.pos_embed_alpha = nn.Parameter(torch.Tensor([1])) if use_pos_embed_alpha else 1
            self.embed_positions = SinusoidalPositionalEmbedding(
                embed_dim, self.padding_idx, init_size=DEFAULT_MAX_TARGET_POSITIONS,
            )

        self.layers = nn.ModuleList([])
        self.layers.extend([
            TransformerEncoderLayer(self.hidden_size, self.dropout,
                                    kernel_size=ffn_kernel_size, num_heads=num_heads,
                                    norm=norm)
            for _ in range(self.num_layers)
        ])
        if self.use_last_norm:
            if norm == 'ln':
                self.layer_norm = nn.LayerNorm(embed_dim)
            elif norm == 'bn':
                self.layer_norm = BatchNorm1dTBC(embed_dim)
            elif norm == 'gn':
                self.layer_norm = GroupNorm1DTBC(8, embed_dim)
        else:
            self.layer_norm = None

    def forward(self, x, padding_mask=None, attn_mask=None, return_hiddens=False):
        """
        :param x: [B, T, C]
        :param padding_mask: [B, T]
        :return: [B, T, C] or [L, B, T, C]
        """
        padding_mask = x.abs().sum(-1).eq(0).data if padding_mask is None else padding_mask
        nonpadding_mask_TB = 1 - padding_mask.transpose(0, 1).float()[:, :, None]  # [T, B, 1]
        if self.use_pos_embed:
            positions = self.pos_embed_alpha * self.embed_positions(x[..., 0])
            x = x + positions
            x = F.dropout(x, p=self.dropout, training=self.training)
        # B x T x C -> T x B x C
        x = x.transpose(0, 1) * nonpadding_mask_TB
        hiddens = []
        for layer in self.layers:
            x = layer(x, encoder_padding_mask=padding_mask, attn_mask=attn_mask) * nonpadding_mask_TB
            hiddens.append(x)
        if self.use_last_norm:
            x = self.layer_norm(x) * nonpadding_mask_TB
        if return_hiddens:
            x = torch.stack(hiddens, 0)  # [L, T, B, C]
            x = x.transpose(1, 2)  # [L, B, T, C]
        else:
            x = x.transpose(0, 1)  # [B, T, C]
        return x

class SequentialSA(nn.Module):
    def __init__(self,layers):
        super(SequentialSA,self).__init__()
        self.layers = nn.ModuleList(layers)
    
    def forward(self,x,x_mask):
        """
        x: [batch, T, H]
        x_mask: [batch, T]
        """
        pad_mask = 1. - x_mask
        for layer in self.layers:
            if isinstance(layer, EncSALayer):
                x = x.permute(1,0,2)
                x = layer(x,pad_mask)
                x = x.permute(1,0,2)
            elif isinstance(layer, nn.Linear):
                x = layer(x) * x_mask.unsqueeze(2)
            elif isinstance(layer, nn.AvgPool1d):
                x = x.permute(0,2,1)
                x = layer(x)
                x = x.permute(0,2,1)
            elif isinstance(layer, nn.PReLU):
                bs, t, hid = x.shape
                x = x.reshape([bs*t,hid])
                x = layer(x)
                x = x.reshape([bs, t, hid])
            else: # Relu
                x = layer(x) 
            
        return x

class TransformerStyleFusionModel(nn.Module):
    def __init__(self, num_heads=4, dropout = 0.1, out_dim = 64):
        super(TransformerStyleFusionModel, self).__init__()
        self.audio_layer = SequentialSA([
            nn.Linear(29, 48),
            nn.ReLU(48),
            nn.Linear(48, 128),
        ])

        self.energy_layer = SequentialSA([
            nn.Linear(1, 16),
            nn.ReLU(16),
            nn.Linear(16, 64),
        ])

        self.backbone1 = FFTBlocks(hidden_size=192,num_layers=3)

        self.sty_encoder = nn.Sequential(*[
            nn.Linear(135, 64),
            nn.ReLU(),
            nn.Linear(64, 128)
        ])

        self.backbone2 = FFTBlocks(hidden_size=320,num_layers=3)

        self.out_layer = SequentialSA([
            nn.AvgPool1d(kernel_size=2,stride=2,padding=0), #[b,hid,t_audio]=>[b,hid,t_audio//2]
            nn.Linear(320,out_dim),
            nn.PReLU(out_dim),
            nn.Linear(out_dim,out_dim),
        ])

        self.dropout = nn.Dropout(p = dropout)

    def forward(self, audio, energy, style, x_mask, y_mask):
        pad_mask = 1. - x_mask
        audio_feat = self.audio_layer(audio, x_mask)
        energy_feat = self.energy_layer(energy, x_mask)
        feat = torch.cat((audio_feat, energy_feat), dim=-1) # [batch, T, H=48+16]
        feat = self.backbone1(feat, pad_mask)
        feat = self.dropout(feat)

        sty_feat = self.sty_encoder(style) # [batch,135]=>[batch, H=64]
        sty_feat = sty_feat.unsqueeze(1).repeat(1, feat.shape[1], 1) # [batch, T, H=64]

        feat = torch.cat([feat, sty_feat], dim=-1) # [batch, T, H=64+64]
        feat = self.backbone2(feat, pad_mask) # [batch, T, H=128]
        out = self.out_layer(feat, y_mask) # [batch, T//2, H=out_dim]

        return out


if __name__ == '__main__':
    model = TransformerStyleFusionModel()
    audio = torch.rand(4,200,29) # [B,T,H]
    energy = torch.rand(4,200,1) # [B,T,H]
    style = torch.ones(4,135) # [B,T]
    x_mask = torch.ones(4,200) # [B,T]
    x_mask[3,10:] = 0
    ret = model(audio,energy,style, x_mask)
    print(" ")