File size: 5,351 Bytes
1cff332
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5c2432b
 
1cff332
5c2432b
1cff332
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
#!/usr/bin/env python3
# -*- coding: utf-8 -*-

import os
import sys
import cv2
import pathlib
import argparse
import numpy as np
import onnxruntime as ort

CURRENT_DIR = pathlib.Path(__file__).parent
sys.path.append(str(CURRENT_DIR))

from coco import COCO_CLASSES
from demo_utils import mkdir, multiclass_nms, demo_postprocess, vis


def make_parser():
    parser = argparse.ArgumentParser("onnxruntime inference sample")
    parser.add_argument(
        "-m",
        "--model",
        type=str,
        default="yolox-s-int8.onnx",
        help="Input your onnx model.",
    )
    parser.add_argument(
        "-i",
        "--image_path",
        type=str,
        default='test_image.png',
        help="Path to your input image.",
    )
    parser.add_argument(
        "-o",
        "--output_dir",
        type=str,
        default='demo_output',
        help="Path to your output directory.",
    )
    parser.add_argument(
        "-s",
        "--score_thr",
        type=float,
        default=0.3,
        help="Score threshold to filter the result.",
    )
    parser.add_argument(
        "--input_shape",
        type=str,
        default="640,640",
        help="Specify an input shape for inference.",
    )
    parser.add_argument(
        "--ipu",
        action="store_true",
        help="Use IPU for inference.",
    )
    parser.add_argument(
        "--provider_config",
        type=str,
        default="vaip_config.json",
        help="Path of the config file for setting provider_options.",
    )
    return parser


def preprocess(img, input_shape, swap=(2, 0, 1)):
    """
    Preprocessing part of YOLOX for scaling and padding image as input to the network.

    Args:
        img (numpy.ndarray): H x W x C, image read with OpenCV
        input_shape (tuple(int)): input shape of the network for inference
        swap (tuple(int)): new order of axes to transpose the input image

    Returns:
        padded_img (numpy.ndarray): preprocessed image to be fed to the network
        ratio (float): ratio for scaling the image to the input shape
    """
    if len(img.shape) == 3:
        padded_img = np.ones((input_shape[0], input_shape[1], 3), dtype=np.uint8) * 114
    else:
        padded_img = np.ones(input_shape, dtype=np.uint8) * 114
    ratio = min(input_shape[0] / img.shape[0], input_shape[1] / img.shape[1])
    resized_img = cv2.resize(
        img,
        (int(img.shape[1] * ratio), int(img.shape[0] * ratio)),
        interpolation=cv2.INTER_LINEAR,
    ).astype(np.uint8)
    padded_img[: int(img.shape[0] * ratio), : int(img.shape[1] * ratio)] = resized_img
    padded_img = padded_img.transpose(swap)
    padded_img = np.ascontiguousarray(padded_img, dtype=np.float32)
    return padded_img, ratio


def postprocess(outputs, input_shape, ratio):
    """
    Post-processing part of YOLOX for generating final results from outputs of the network.

    Args:
        outputs (tuple(numpy.ndarray)): outputs of the detection heads with onnxruntime session
        input_shape (tuple(int)): input shape of the network for inference
        ratio (float): ratio for scaling the image to the input shape

    Returns:
        dets (numpy.ndarray): n x 6, dets[:,:4] -> boxes, dets[:,4] -> scores, dets[:,5] -> class indices
    """
    outputs = [out.reshape(*out.shape[:2], -1).transpose(0,2,1) for out in outputs]
    outputs = np.concatenate(outputs, axis=1)
    outputs[..., 4:] = sigmoid(outputs[..., 4:])
    predictions = demo_postprocess(outputs, input_shape, p6=False)[0]
    boxes = predictions[:, :4]
    scores = predictions[:, 4:5] * predictions[:, 5:]
    boxes_xyxy = np.ones_like(boxes)
    boxes_xyxy[:, 0] = boxes[:, 0] - boxes[:, 2]/2.
    boxes_xyxy[:, 1] = boxes[:, 1] - boxes[:, 3]/2.
    boxes_xyxy[:, 2] = boxes[:, 0] + boxes[:, 2]/2.
    boxes_xyxy[:, 3] = boxes[:, 1] + boxes[:, 3]/2.
    boxes_xyxy /= ratio
    dets = multiclass_nms(boxes_xyxy, scores, nms_thr=0.45, score_thr=0.1)
    return dets


def sigmoid(x):
    return 1.0 / (1.0 + np.exp(-x))


if __name__ == '__main__':
    args = make_parser().parse_args()
    input_shape = tuple(map(int, args.input_shape.split(',')))
    origin_img = cv2.imread(args.image_path)
    img, ratio = preprocess(origin_img, input_shape)
    if args.ipu:
        providers = ["VitisAIExecutionProvider"]
        provider_options = [{"config_file": args.provider_config}]
    else:
        providers = ['CUDAExecutionProvider', 'CPUExecutionProvider']
        provider_options = None
    session = ort.InferenceSession(args.model, providers=providers, provider_options=provider_options)
    # ort_inputs = {session.get_inputs()[0].name: img[None, :, :, :]}
    ort_inputs = {session.get_inputs()[0].name: np.transpose(img[None, :, :, :], (0, 2 ,3, 1))}
    outputs = session.run(None, ort_inputs)
    outputs = [np.transpose(out, (0, 3, 1, 2)) for out in outputs]
    dets = postprocess(outputs, input_shape, ratio)
    if dets is not None:
        final_boxes, final_scores, final_cls_inds = dets[:, :4], dets[:, 4], dets[:, 5]
        origin_img = vis(origin_img, final_boxes, final_scores, final_cls_inds,
                         conf=args.score_thr, class_names=COCO_CLASSES)
    mkdir(args.output_dir)
    output_path = os.path.join(args.output_dir, os.path.basename(args.image_path))
    cv2.imwrite(output_path, origin_img)