File size: 8,480 Bytes
1cff332
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
#!/usr/bin/env python3
# -*- coding:utf-8 -*-

import os
import cv2
import numpy as np
from loguru import logger
from functools import wraps
from pycocotools.coco import COCO
from torch.utils.data.dataset import Dataset as torchDataset

COCO_CLASSES = (
'person', 'bicycle', 'car', 'motorcycle', 'airplane', 'bus', 'train', 'truck', 'boat', 'traffic light', 'fire hydrant',
'stop sign', 'parking meter', 'bench', 'bird', 'cat', 'dog', 'horse', 'sheep', 'cow', 'elephant', 'bear', 'zebra',
'giraffe', 'backpack', 'umbrella', 'handbag', 'tie', 'suitcase', 'frisbee', 'skis', 'snowboard', 'sports ball', 'kite',
'baseball bat', 'baseball glove', 'skateboard', 'surfboard', 'tennis racket', 'bottle', 'wine glass', 'cup', 'fork',
'knife', 'spoon', 'bowl', 'banana', 'apple', 'sandwich', 'orange', 'broccoli', 'carrot', 'hot dog', 'pizza', 'donut',
'cake', 'chair', 'couch', 'potted plant', 'bed', 'dining table', 'toilet', 'tv', 'laptop', 'mouse', 'remote',
'keyboard', 'cell phone', 'microwave', 'oven', 'toaster', 'sink', 'refrigerator', 'book', 'clock', 'vase', 'scissors',
'teddy bear', 'hair drier', 'toothbrush')


def remove_useless_info(coco):
    """
    Remove useless info in coco dataset. COCO object is modified inplace.
    This function is mainly used for saving memory (save about 30% mem).
    """
    if isinstance(coco, COCO):
        dataset = coco.dataset
        dataset.pop("info", None)
        dataset.pop("licenses", None)
        for img in dataset["images"]:
            img.pop("license", None)
            img.pop("coco_url", None)
            img.pop("date_captured", None)
            img.pop("flickr_url", None)
        if "annotations" in coco.dataset:
            for anno in coco.dataset["annotations"]:
                anno.pop("segmentation", None)


class Dataset(torchDataset):
    """ This class is a subclass of the base :class:`torch.utils.data.Dataset`,
    that enables on the fly resizing of the ``input_dim``.

    Args:
        input_dimension (tuple): (width,height) tuple with default dimensions of the network
    """

    def __init__(self, input_dimension, mosaic=True):
        super().__init__()
        self.__input_dim = input_dimension[:2]
        self.enable_mosaic = mosaic

    @property
    def input_dim(self):
        """
        Dimension that can be used by transforms to set the correct image size, etc.
        This allows transforms to have a single source of truth
        for the input dimension of the network.

        Return:
            list: Tuple containing the current width,height
        """
        if hasattr(self, "_input_dim"):
            return self._input_dim
        return self.__input_dim

    @staticmethod
    def mosaic_getitem(getitem_fn):
        """
        Decorator method that needs to be used around the ``__getitem__`` method. |br|
        This decorator enables the closing mosaic

        Example:
            >>> class CustomSet(ln.data.Dataset):
            ...     def __len__(self):
            ...         return 10
            ...     @ln.data.Dataset.mosaic_getitem
            ...     def __getitem__(self, index):
            ...         return self.enable_mosaic
        """

        @wraps(getitem_fn)
        def wrapper(self, index):
            if not isinstance(index, int):
                self.enable_mosaic = index[0]
                index = index[1]
            ret_val = getitem_fn(self, index)
            return ret_val

        return wrapper


class COCODataset(Dataset):
    """
    COCO dataset class.
    """

    def __init__(
            self,
            data_dir='data/COCO',
            json_file="instances_train2017.json",
            name="train2017",
            img_size=(416, 416),
            preproc=None
    ):
        """
        COCO dataset initialization. Annotation data are read into memory by COCO API.
        Args:
            data_dir (str): dataset root directory
            json_file (str): COCO json file name
            name (str): COCO data name (e.g. 'train2017' or 'val2017')
            img_size (tuple(int)): target image size after pre-processing
            preproc: data augmentation strategy
        """
        super().__init__(img_size)
        self.data_dir = data_dir
        self.json_file = json_file
        self.coco = COCO(os.path.join(self.data_dir, "annotations", self.json_file))
        remove_useless_info(self.coco)
        self.ids = self.coco.getImgIds()
        self.class_ids = sorted(self.coco.getCatIds())
        self.cats = self.coco.loadCats(self.coco.getCatIds())
        self._classes = tuple([c["name"] for c in self.cats])
        self.imgs = None
        self.name = name
        self.img_size = img_size
        self.preproc = preproc
        self.annotations = self._load_coco_annotations()

    def __len__(self):
        return len(self.ids)

    def __del__(self):
        del self.imgs

    def _load_coco_annotations(self):
        return [self.load_anno_from_ids(_ids) for _ids in self.ids]

    def load_anno_from_ids(self, id_):
        im_ann = self.coco.loadImgs(id_)[0]
        width = im_ann["width"]
        height = im_ann["height"]
        anno_ids = self.coco.getAnnIds(imgIds=[int(id_)], iscrowd=False)
        annotations = self.coco.loadAnns(anno_ids)
        objs = []
        for obj in annotations:
            x1 = np.max((0, obj["bbox"][0]))
            y1 = np.max((0, obj["bbox"][1]))
            x2 = np.min((width, x1 + np.max((0, obj["bbox"][2]))))
            y2 = np.min((height, y1 + np.max((0, obj["bbox"][3]))))
            if obj["area"] > 0 and x2 >= x1 and y2 >= y1:
                obj["clean_bbox"] = [x1, y1, x2, y2]
                objs.append(obj)
        num_objs = len(objs)
        res = np.zeros((num_objs, 5))
        for ix, obj in enumerate(objs):
            cls = self.class_ids.index(obj["category_id"])
            res[ix, 0:4] = obj["clean_bbox"]
            res[ix, 4] = cls
        r = min(self.img_size[0] / height, self.img_size[1] / width)
        res[:, :4] *= r
        img_info = (height, width)
        resized_info = (int(height * r), int(width * r))
        file_name = (
            im_ann["file_name"]
            if "file_name" in im_ann
            else "{:012}".format(id_) + ".jpg"
        )
        return res, img_info, resized_info, file_name

    def load_anno(self, index):
        return self.annotations[index][0]

    def load_resized_img(self, index):
        img = self.load_image(index)
        r = min(self.img_size[0] / img.shape[0], self.img_size[1] / img.shape[1])
        resized_img = cv2.resize(
            img,
            (int(img.shape[1] * r), int(img.shape[0] * r)),
            interpolation=cv2.INTER_LINEAR,
        ).astype(np.uint8)
        return resized_img

    def load_image(self, index):
        file_name = self.annotations[index][3]
        img_file = os.path.join(self.data_dir, self.name, file_name)
        img = cv2.imread(img_file)
        assert img is not None, f"file named {img_file} not found"
        return img

    def pull_item(self, index):
        id_ = self.ids[index]
        res, img_info, resized_info, _ = self.annotations[index]
        if self.imgs is not None:
            pad_img = self.imgs[index]
            img = pad_img[: resized_info[0], : resized_info[1], :].copy()
        else:
            img = self.load_resized_img(index)
        return img, res.copy(), img_info, np.array([id_])

    @Dataset.mosaic_getitem
    def __getitem__(self, index):
        """
        One image / label pair for the given index is picked up and pre-processed.

        Args:
            index (int): data index

        Returns:
            img (numpy.ndarray): pre-processed image
            target (torch.Tensor): pre-processed label data.
                The shape is :math:`[max_labels, 5]`.
                each label consists of [class, xc, yc, w, h]:
                    class (float): class index.
                    xc, yc (float) : center of bbox whose values range from 0 to 1.
                    w, h (float) : size of bbox whose values range from 0 to 1.
            img_info : tuple of h, w.
                h, w (int): original shape of the image
            img_id (int): same as the input index. Used for evaluation.
        """
        img, target, img_info, img_id = self.pull_item(index)
        if self.preproc is not None:
            img, target = self.preproc(img, target, self.input_dim)
        return img, target, img_info, img_id