File size: 6,696 Bytes
32865f3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
import numpy as np
from tqdm import tqdm
from pathlib import Path
import json
from collections import defaultdict
import sys
import pathlib

CURRENT_DIR = pathlib.Path(__file__).parent
sys.path.append(str(CURRENT_DIR))


def make_dirs(path='coco'):
    # Create folders
    path = Path(path)
    for p in [path / 'labels']:
        p.mkdir(parents=True, exist_ok=True)  # make dir
    return path


def coco91_to_coco80_class():  # converts 80-index (val2014) to 91-index (paper)
    # https://tech.amikelive.com/node-718/what-object-categories-labels-are-in-coco-dataset/
    x = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, None, 11, 12, 13, 14, 15, 16, 17,
         18, 19, 20, 21, 22, 23, None, 24, 25, None, None, 26, 27, 28, 29,
         30, 31, 32, 33, 34, 35, 36, 37, 38, 39, None, 40, 41, 42, 43, 44,
         45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, None,
         60, None, None, 61, None, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71,
         72, None, 73, 74, 75, 76, 77, 78, 79, None]
    return x


def convert_coco_json(
        json_dir='coco/annotations/',
        use_segments=False,
        cls91to80=False):
    save_dir = make_dirs()  # output directory
    coco80 = coco91_to_coco80_class()
    """Convert raw COCO dataset to YOLO style
    """

    # Import json
    for json_file in sorted(Path(json_dir).resolve().glob('instances_val2017.json')):
        fn = Path(save_dir) / 'labels' / \
             json_file.stem.replace('instances_', '')  # folder name
        fn.mkdir()
        with open(json_file) as f:
            data = json.load(f)

        # Create image dict
        images = {'%g' % x['id']: x for x in data['images']}
        # Create image-annotations dict
        imgToAnns = defaultdict(list)
        for ann in data['annotations']:
            imgToAnns[ann['image_id']].append(ann)

        txt_file = open(Path(save_dir / 'val2017').
                        with_suffix('.txt'), 'a')
        # Write labels file
        for img_id, anns in tqdm(
                imgToAnns.items(), desc=f'Annotations {json_file}'):
            img = images['%g' % img_id]
            h, w, f = img['height'], img['width'], img['file_name']
            bboxes = []
            segments = []

            txt_file.write(
                './images/' + '/'.
                join(img['coco_url'].split('/')[-2:]) + '\n')
            for ann in anns:
                if ann['iscrowd']:
                    continue
                # The COCO box format is
                # [top left x, top left y, width,
                # height]
                box = np.array(ann['bbox'], dtype=np.float64)
                box[:2] += box[2:] / 2  # xy top-left corner to center
                box[[0, 2]] /= w  # normalize x
                box[[1, 3]] /= h  # normalize y
                if box[2] <= 0 or box[3] <= 0:  # if w <= 0 and h <= 0
                    continue
                cls = coco80[ann['category_id'] - 1] \
                    if cls91to80 else ann['category_id'] - 1  # class
                box = [cls] + box.tolist()
                if box not in bboxes:
                    bboxes.append(box)
                # Segments
                if use_segments:
                    if len(ann['segmentation']) > 1:
                        s = merge_multi_segment(ann['segmentation'])
                        s = (np.concatenate(s, axis=0) /
                             np.array([w, h])).reshape(-1).tolist()
                    else:
                        s = [j for i in ann['segmentation']
                             for j in i]  # all segments concatenated
                        s = (np.array(s).reshape(-1, 2) /
                             np.array([w, h])).reshape(-1).tolist()
                    s = [cls] + s
                    if s not in segments:
                        segments.append(s)

            # Write
            with open((fn / f).with_suffix('.txt'), 'a') as file:
                for i in range(len(bboxes)):
                    # cls, box or segments
                    line = *(segments[i] if
                             use_segments else bboxes[i]),
                    file.write(('%g ' * len(line)).
                               rstrip() % line + '\n')
        txt_file.close()


def min_index(arr1, arr2):
    """Find a pair of indexes with the shortest distance.
    Args:
        arr1: (N, 2).
        arr2: (M, 2).
    Return:
        a pair of indexes(tuple).
    """
    dis = ((arr1[:, None, :] - arr2[None, :, :]) ** 2).sum(-1)
    return np.unravel_index(np.argmin(dis, axis=None), dis.shape)


def merge_multi_segment(segments):
    """Merge multi segments to one list.
    Find the coordinates with min distance between each segment,
    then connect these coordinates with one thin line to merge all
    segments into one.

    Args:
        segments(List(List)): original
            segmentations in coco's json file.
            like [segmentation1, segmentation2,...],
            each segmentation is a list of coordinates.
    """
    s = []
    segments = [np.array(i).reshape(-1, 2) for i in segments]
    idx_list = [[] for _ in range(len(segments))]

    # record the indexes with min distance between each segment
    for i in range(1, len(segments)):
        idx1, idx2 = min_index(segments[i - 1], segments[i])
        idx_list[i - 1].append(idx1)
        idx_list[i].append(idx2)

    # use two round to connect all the segments
    for k in range(2):
        # forward connection
        if k == 0:
            for i, idx in enumerate(idx_list):
                # middle segments have two indexes
                # reverse the index of middle segments
                if len(idx) == 2 and idx[0] > idx[1]:
                    idx = idx[::-1]
                    segments[i] = segments[i][::-1, :]

                segments[i] = np.roll(segments[i], -idx[0], axis=0)
                segments[i] = np.concatenate([segments[i],
                                              segments[i][:1]])
                # deal with the first segment and the last one
                if i in [0, len(idx_list) - 1]:
                    s.append(segments[i])
                else:
                    idx = [0, idx[1] - idx[0]]
                    s.append(segments[i][idx[0]:idx[1] + 1])

        else:
            for i in range(len(idx_list) - 1, -1, -1):
                if i not in [0, len(idx_list) - 1]:
                    idx = idx_list[i]
                    nidx = abs(idx[1] - idx[0])
                    s.append(segments[i][nidx:])
    return s


if __name__ == '__main__':
    convert_coco_json('coco/annotations',
                      use_segments=False,
                      cls91to80=True)