File size: 7,901 Bytes
ff1446e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8b4b482
ff1446e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8b4b482
 
ff1446e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
import numpy as np
import cv2
from itertools import product as product
from math import ceil

import torch
import torch.nn.functional as F


class PriorBox(object):
    def __init__(self, cfg, image_size=None, phase="train"):
        super(PriorBox, self).__init__()
        self.min_sizes = cfg["min_sizes"]
        self.steps = cfg["steps"]
        self.clip = cfg["clip"]
        self.image_size = image_size
        self.feature_maps = [
            [ceil(self.image_size[0] / step), ceil(self.image_size[1] / step)]
            for step in self.steps
        ]

    def forward(self):
        anchors = []
        for k, f in enumerate(self.feature_maps):
            min_sizes = self.min_sizes[k]
            for i, j in product(range(f[0]), range(f[1])):
                for min_size in min_sizes:
                    s_kx = min_size / self.image_size[1]
                    s_ky = min_size / self.image_size[0]
                    dense_cx = [
                        x * self.steps[k] / self.image_size[1] for x in [j + 0.5]
                    ]
                    dense_cy = [
                        y * self.steps[k] / self.image_size[0] for y in [i + 0.5]
                    ]
                    for cy, cx in product(dense_cy, dense_cx):
                        anchors += [cx, cy, s_kx, s_ky]
        # back to torch land
        output = torch.Tensor(anchors).view(-1, 4)
        if self.clip:
            output.clamp_(max=1, min=0)
        return output


def py_cpu_nms(dets, thresh):
    """Pure Python NMS baseline.
    Args:
        dets: detections before nms
        thresh: nms threshold
    Return:
        keep: index after nms
    """
    x1 = dets[:, 0]
    y1 = dets[:, 1]
    x2 = dets[:, 2]
    y2 = dets[:, 3]
    scores = dets[:, 4]
    areas = (x2 - x1 + 1) * (y2 - y1 + 1)
    order = scores.argsort()[::-1]

    keep = []
    while order.size > 0:
        i = order[0]
        keep.append(i)
        xx1 = np.maximum(x1[i], x1[order[1:]])
        yy1 = np.maximum(y1[i], y1[order[1:]])
        xx2 = np.minimum(x2[i], x2[order[1:]])
        yy2 = np.minimum(y2[i], y2[order[1:]])

        w = np.maximum(0.0, xx2 - xx1 + 1)
        h = np.maximum(0.0, yy2 - yy1 + 1)
        inter = w * h
        ovr = inter / (areas[i] + areas[order[1:]] - inter)

        inds = np.where(ovr <= thresh)[0]
        order = order[inds + 1]
    return keep


def decode(loc, priors, variances):
    """Decode locations from predictions using priors to undo
    the encoding we did for offset regression at train time.
    Args:
        loc (tensor): location predictions for loc layers,
            Shape: [num_priors,4]
        priors (tensor): Prior boxes in center-offset form.
            Shape: [num_priors,4].
        variances: (list[float]) Variances of priorboxes
    Return:
        decoded bounding box predictions
    """

    boxes = torch.cat(
        (
            priors[:, :2] + loc[:, :2] * variances[0] * priors[:, 2:],
            priors[:, 2:] * torch.exp(loc[:, 2:] * variances[1]),
        ),
        1,
    )
    boxes[:, :2] -= boxes[:, 2:] / 2
    boxes[:, 2:] += boxes[:, :2]
    return boxes


def decode_landm(pre, priors, variances):
    """Decode landm from predictions using priors to undo
    the encoding we did for offset regression at train time.
    Args:
        pre (tensor): landm predictions for loc layers,
            Shape: [num_priors,10]
        priors (tensor): Prior boxes in center-offset form.
            Shape: [num_priors,4].
        variances: (list[float]) Variances of priorboxes
    Return:
        decoded landm predictions
    """
    landms = torch.cat(
        (
            priors[:, :2] + pre[:, :2] * variances[0] * priors[:, 2:],
            priors[:, :2] + pre[:, 2:4] * variances[0] * priors[:, 2:],
            priors[:, :2] + pre[:, 4:6] * variances[0] * priors[:, 2:],
            priors[:, :2] + pre[:, 6:8] * variances[0] * priors[:, 2:],
            priors[:, :2] + pre[:, 8:10] * variances[0] * priors[:, 2:],
        ),
        dim=1,
    )
    return landms


def pad_image(image, h, w, size, padvalue):
    pad_image = image.copy()
    pad_h = max(size[0] - h, 0)
    pad_w = max(size[1] - w, 0)
    if pad_h > 0 or pad_w > 0:
        pad_image = cv2.copyMakeBorder(image, 0, pad_h, 0,
                                    pad_w, cv2.BORDER_CONSTANT,
                                    value=padvalue)
    return pad_image


def resize_image(image, re_size, keep_ratio=True):
    """Resize image
    Args: 
        image: origin image
        re_size: resize scale
        keep_ratio: keep aspect ratio. Default is set to true.
    Returns:
        re_image: resized image
        resize_ratio: resize ratio
    """
    if not keep_ratio:
        re_image = cv2.resize(image, (re_size[0], re_size[1])).astype('float32')                                             
        return re_image, 0, 0 
    ratio = re_size[0] * 1.0 / re_size[1] 
    h, w = image.shape[0:2]
    if h * 1.0 / w <= ratio:
        resize_ratio = re_size[1] * 1.0 / w
        re_h, re_w = int(h * resize_ratio), re_size[1] 
    else:
        resize_ratio = re_size[0] * 1.0 / h
        re_h, re_w = re_size[0], int(w * resize_ratio)
    
    re_image = cv2.resize(image, (re_w, re_h)).astype('float32')                                              
    re_image = pad_image(re_image, re_h, re_w, re_size, (0.0, 0.0, 0.0))
    return re_image, resize_ratio


def preprocess(img_raw, input_size, device):
    """preprocess
    Args:
        img_raw: origin image 
    Returns: 
        img: resized image
        scale: resized image scale
        resize: resize ratio
    """
    img = np.float32(img_raw)
    # resize image
    img, resize = resize_image(img, input_size)
    scale = torch.Tensor([img.shape[1], img.shape[0], img.shape[1], img.shape[0]])
    img -= (104, 117, 123)
    img = img.transpose(2, 0, 1)
    img = torch.from_numpy(img).unsqueeze(0)
    img = img.numpy()
    scale = scale.to(device)
    return img, scale, resize


def postprocess(cfg, img, outputs, scale, resize, confidence_threshold, nms_threshold, device):
    """post_process
    Args:
        img: resized image
        outputs: forward outputs
        scale: resized image scale
        resize: resize ratio
        confidence_threshold: confidence threshold
        nms_threshold: non-maximum suppression threshold
    Returns: 
        detetcion results
    """
    _,  im_height, im_width, _= img.shape
    loc = torch.from_numpy(outputs[0])
    conf = torch.from_numpy(outputs[1])
    landms = torch.from_numpy(outputs[2])
    # softmax
    conf = F.softmax(conf, dim=-1)

    priorbox = PriorBox(cfg, image_size=(im_height, im_width))
    priors = priorbox.forward()
    priors = priors.to(device)
    prior_data = priors.data
    boxes = decode(loc.squeeze(0), prior_data, cfg["variance"])
    boxes = boxes * scale / resize 
    boxes = boxes.cpu().numpy()
    scores = conf.squeeze(0).data.cpu().numpy()[:, 1]
    landms = decode_landm(landms.squeeze(0), prior_data, cfg["variance"])
    scale1 = torch.Tensor(
        [img.shape[2], img.shape[1], img.shape[2], img.shape[1], img.shape[2],
         img.shape[1], img.shape[2], img.shape[1], img.shape[2], img.shape[1],]
    )
    scale1 = scale1.to(device)
    landms = landms * scale1 / resize 
    landms = landms.cpu().numpy()

    # ignore low scores
    inds = np.where(scores > confidence_threshold)[0]
    boxes = boxes[inds]
    landms = landms[inds]
    scores = scores[inds]

    # keep top-K before NMS
    order = scores.argsort()[::-1]
    boxes = boxes[order]
    landms = landms[order]
    scores = scores[order]

    # do NMS
    dets = np.hstack((boxes, scores[:, np.newaxis])).astype(np.float32, copy=False)
    keep = py_cpu_nms(dets, nms_threshold)
    dets = dets[keep, :]
    landms = landms[keep]
    dets = np.concatenate((dets, landms), axis=1)
    return dets