File size: 10,274 Bytes
21794d5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
"""
@Fire
https://github.com/fire717
"""
import os
import json
import pickle
import cv2
import numpy as np




"""
segmentation格式取决于这个实例是一个单个的对象(即iscrowd=0,将使用polygons格式)
还是一组对象(即iscrowd=1,将使用RLE格式

iscrowd=1时(将标注一组对象,比如一群人)


标注说明:x,y,v,x,y,v,...
其中v:#0没有标注;1有标注不可见(被遮挡);2有标注可见

关键点顺序:'keypoints': ['nose', 'left_eye', 'right_eye', 'left_ear', 'right_ear', 
    'left_shoulder', 'right_shoulder', 'left_elbow', 'right_elbow', 'left_wrist', 
    'right_wrist', 'left_hip', 'right_hip', 'left_knee', 'right_knee', 'left_ankle', 
    'right_ankle']

"""


def main(img_dir, labels_path, output_name, output_img_dir):

    if not os.path.exists(output_img_dir):
        os.makedirs(output_img_dir)


    with open(labels_path, 'r') as f:
        data = json.load(f)

    #print("total: ", len(data)) 5
    #print(data.keys())#['info', 'licenses', 'images', 'annotations', 'categories']
    #print(len(data['annotations']), len(data['images']))#88153 40504
    #print(data['categories'])
    """
    [{'supercategory': 'person', 'name': 'person', 
    'skeleton': [[16, 14], [14, 12], [17, 15], [15, 13], [12, 13], [6, 12], [7, 13], 
    [6, 7], [6, 8], [7, 9], [8, 10], [9, 11], [2, 3], [1, 2], [1, 3], [2, 4], [3, 5], 
    4, 6], [5, 7]], 
    'keypoints': ['nose', 'left_eye', 'right_eye', 'left_ear', 'right_ear', 
    'left_shoulder', 'right_shoulder', 'left_elbow', 'right_elbow', 'left_wrist', 
    'right_wrist', 'left_hip', 'right_hip', 'left_knee', 'right_knee', 'left_ankle', 
    'right_ankle'], 'id': 1}]
    """
    #print(data['images'][:3])#有filename和id

    img_id_to_name = {}
    img_name_to_id = {}
    for item in data['images']:
        idx = item['id']
        name = item['file_name']
        img_id_to_name[idx] = name
        img_name_to_id[name] = idx
    print(len(img_id_to_name))
    

    anno_by_imgname = {}
    for annotation in data['annotations']:
        name = img_id_to_name[annotation['image_id']]
        if name in anno_by_imgname:
            anno_by_imgname[name] += [annotation]
        else:
            anno_by_imgname[name] = [annotation]
    print(len(anno_by_imgname))



    new_label = []
    for k,v in anno_by_imgname.items():
        #filter out more than 3 people
        if len(v)>3:
            continue

        # print(k)
        # print(v)

        img = cv2.imread(os.path.join(img_dir, k))
        if img is None:
            print(os.path.join(img_dir, k))
            continue
        h,w = img.shape[:2]
        for idx,item in enumerate(v):
            if item['iscrowd'] != 0:
                continue

            bbox = [int(x) for x in item['bbox']]#x,y,w,h
            # cv2.rectangle(img, (bbox[0], bbox[1]), (bbox[0]+bbox[2], bbox[1]+bbox[3]), (0,255,0), 2)

            keypoints = item['keypoints']

            # for i in range(len(keypoints)//3):
            #     x = keypoints[i*3]
            #     y = keypoints[i*3+1]
            #     z = keypoints[i*3+2]#0没有标注;1有标注不可见(被遮挡);2有标注可见
            #     # print(x,y,z)
            #     if z==1:
            #         color = (255,0,0)
            #     elif z==2:
            #         color = (0,0,255)
            #     else:
            #         continue
                # cv2.circle(img, (x, y), 4, color, 3)


            # merge bbox and keypoints to get max bbox 
            keypoints = np.array(keypoints).reshape((17,3))

            keypoints_v = keypoints[keypoints[:,2]>0]
            if len(keypoints_v)<8:#filter out keypoints not enough
                continue
            min_key_x = np.min(keypoints_v[:,0])
            max_key_x = np.max(keypoints_v[:,0])
            min_key_y = np.min(keypoints_v[:,1])
            max_key_y = np.max(keypoints_v[:,1])

            x0 = min(bbox[0], min_key_x)
            x1 = max(bbox[0]+bbox[2], max_key_x)
            y0 = min(bbox[1], min_key_y)
            y1 = max(bbox[1]+bbox[3], max_key_y)
            # cv2.rectangle(img, (x0, y0), (x1, y1), (0,255,255), 2)

            # expand to square then expand
            cx = (x0+x1)/2
            cy = (y0+y1)/2
            
            half_size = ((x1-x0)+(y1-y0))/2 * EXPAND_RATIO
            new_x0 = int(cx - half_size)
            new_x1 = int(cx + half_size)
            new_y0 = int(cy - half_size)
            new_y1 = int(cy + half_size)

            #pad where exceed edge
            pad_top = 0
            pad_left = 0
            pad_right = 0
            pad_bottom = 0
            if new_x0 < 0:
                pad_left = -new_x0+1
            if new_y0 < 0:
                pad_top = -new_y0+1
            if new_x1 > w:
                pad_right = new_x1-w+1
            if new_y1 > h:
                pad_bottom = new_y1-h+1

            pad_img = np.zeros((h+pad_top+pad_bottom, w+pad_left+pad_right, 3))
            pad_img[pad_top:pad_top+h,pad_left:pad_left+w] = img
            new_x0 += pad_left
            new_y0 += pad_top
            new_x1 += pad_left
            new_y1 += pad_top
            # cv2.rectangle(pad_img, (new_x0, new_y0), (new_x1, new_y1), (0,255,0), 2)

            # final save data
            save_name = k[:-4]+"_"+str(idx)+".jpg"
            new_w = new_x1-new_x0
            new_h = new_y1-new_y0
            save_img = pad_img[new_y0:new_y1,new_x0:new_x1]
            save_bbox = [(bbox[0]+pad_left-new_x0)/new_w,
                         (bbox[1]+pad_top-new_y0)/new_h,
                         (bbox[0]+bbox[2]+pad_left-new_x0)/new_w,
                         (bbox[1]+bbox[3]+pad_top-new_y0)/new_h
                        ]
            save_center = [(save_bbox[0]+save_bbox[2])/2,(save_bbox[1]+save_bbox[3])/2]

            save_keypoints = []
            for kid in range(len(keypoints)):
                save_keypoints.extend([(int(keypoints[kid][0])+pad_left-new_x0)/new_w,
                                       (int(keypoints[kid][1])+pad_top-new_y0)/new_h,
                                       int(keypoints[kid][2])
                                      ])
            other_centers = []
            other_keypoints = [[] for _ in range(17)]
            for idx2,item2 in enumerate(v):
                if item2['iscrowd'] != 0 or idx2==idx:
                    continue
                bbox2 = [int(x) for x in item2['bbox']]#x,y,w,h

                save_bbox2 = [(bbox2[0]+pad_left-new_x0)/new_w,
                             (bbox2[1]+pad_top-new_y0)/new_h,
                             (bbox2[0]+bbox2[2]+pad_left-new_x0)/new_w,
                             (bbox2[1]+bbox2[3]+pad_top-new_y0)/new_h
                            ]
                save_center2 = [(save_bbox2[0]+save_bbox2[2])/2,
                                (save_bbox2[1]+save_bbox2[3])/2]
                if save_center2[0]>0 and save_center2[0]<1 and save_center2[1]>0 and save_center2[1]<1:
                    other_centers.append(save_center2)

                keypoints2 = item2['keypoints']
                keypoints2 = np.array(keypoints2).reshape((17,3))
                for kid2 in range(17):
                    if keypoints2[kid2][2]==0:
                        continue
                    kx = (keypoints2[kid2][0]+pad_left-new_x0)/new_w
                    ky = (keypoints2[kid2][1]+pad_top-new_y0)/new_h
                    if kx>0 and kx<1 and ky>0 and ky<1:
                        other_keypoints[kid2].append([kx,ky])

            save_item = {
                         "img_name":save_name,
                         "keypoints":save_keypoints,
                         "center":save_center,
                         "bbox":save_bbox,
                         "other_centers":other_centers,
                         "other_keypoints":other_keypoints,
                        }
            # for k,v in save_item.items():
            #     print(type(v[0]))
            # b
            new_label.append(save_item)



            ###visul for exam, comment when use
            if SHOW_POINTS_ON_IMG:
                cv2.circle(save_img, (int(save_center[0]*new_w), int(save_center[1]*new_h)), 4, (0,255,0), 3)
                for show_kid in range(len(save_keypoints)//3):
                    if save_keypoints[show_kid*3+2]==1:
                        color = (255,0,0)
                    elif save_keypoints[show_kid*3+2]==2:
                        color = (0,0,255)
                    else:
                        continue
                    cv2.circle(save_img, (int(save_keypoints[show_kid*3]*new_w), 
                                int(save_keypoints[show_kid*3+1]*new_h)), 3, color, 2)
                cv2.rectangle(save_img, (int(save_bbox[0]*new_w), int(save_bbox[1]*new_h)), 
                        (int(save_bbox[2]*new_w), int(save_bbox[3]*new_h)), (0,255,0), 2)
                for show_c in other_centers:
                    cv2.circle(save_img, (int(show_c[0]*new_w), int(show_c[1]*new_h)), 4, (0,255,255), 3)
                for show_ks in other_keypoints:
                    for show_k in show_ks:
                        cv2.circle(save_img, (int(show_k[0]*new_w), int(show_k[1]*new_h)), 3, (255,255,0), 2)


            cv2.imwrite(os.path.join(output_img_dir, save_name), save_img)
            
            # print(save_item, save_img.shape)

            # b
        # cv2.imwrite(os.path.join("show", k), pad_img)

    with open(output_name,'w') as f:  
        json.dump(new_label, f, ensure_ascii=False)     
    print('Total write ', len(new_label))


if __name__ == '__main__':

    #### PARAM ####

    SHOW_POINTS_ON_IMG = False
    #whether to show points on img for debug

    EXPAND_RATIO = 1. 
    #person body bbox expand range to image edge


    output_img_dir = "./data/croped/imgs"
    img_dir = "./data/val2017"
    labels_path = "./data/annotations/person_keypoints_val2017.json"
    output_name = "./data/croped/val2017.json"
    main(img_dir, labels_path, output_name, output_img_dir)
    img_dir = "./data/train2017"
    labels_path = "./data/annotations/person_keypoints_train2017.json"
    output_name = "./data/croped/train2017.json"
    main(img_dir, labels_path, output_name, output_img_dir)