File size: 1,809 Bytes
1fec2a7 8e68008 1fec2a7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 |
---
license: apache-2.0
datasets:
- imagenet-1k
metrics:
- accuracy
tags:
- RyzenAI
- vision
- classification
- pytorch
---
# Inception_v4
Quantized Inception_v4 model that could be supported by [AMD Ryzen AI](https://ryzenai.docs.amd.com/en/latest/).
## Model description
Inception_v4 was first introduced in the paper [Inception-v4, Inception-ResNet and the Impact of Residual Connections on Learning](https://arxiv.org/abs/1602.07261).
The model implementaion is from [TensorFlow-Slim](https://github.com/tensorflow/models/tree/master/research/slim).
## How to use
### Installation
Follow [Ryzen AI Installation](https://ryzenai.docs.amd.com/en/latest/inst.html) to prepare the environment for Ryzen AI.
Run the following script to install pre-requisites for this model.
```bash
pip install -r requirements.txt
```
### Data Preparation
Follow [imagenet-1k](https://huggingface.co/datasets/imagenet-1k) to download dataset.
Download [ImageNet validation synset labels file](https://github.com/tensorflow/models/blob/master/research/slim/datasets/imagenet_2012_validation_synset_labels.txt).
Create validation image list:
```bash
python create_image_list.py imagenet_2012_validation_synset_labels.txt
```
### Model Evaluation
```python
python eval_onnx.py --onnx_model inceptionv4_int8.onnx --ipu --provider_config Path\To\vaip_config.json --val_data_dir /Path/To/Your/Validation/Data --val_image_list val.txt
```
### Performance
|Metric |Accuracy on IPU|
| :----: | :----: |
|Top1/Top5| 79.92% / 95.02%|
```bibtex
@article{Szegedy2016Inceptionv4IA,
title={Inception-v4, Inception-ResNet and the Impact of Residual Connections on Learning},
author={Christian Szegedy and Sergey Ioffe and Vincent Vanhoucke and Alexander A. Alemi},
journal={arXiv:1602.07261},
year={2016},
}
``` |