File size: 3,749 Bytes
faac7d4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
import os
import sys
import random
import numpy as np
from tqdm import tqdm, trange
from PIL import Image, ImageOps, ImageFilter

import torch
import torch.utils.data as data
import torchvision.transforms as transform

from datasets.base import BaseDataset

class CitySegmentation(BaseDataset):
    NUM_CLASS = 19
    def __init__(self, root, split='val', mode='testval', transform=None, target_transform=None, **kwargs):
        super(CitySegmentation, self).__init__(
            root, split, mode, transform, target_transform, **kwargs)
        self.images, self.mask_paths = get_city_pairs(self.root, self.split)
        assert (len(self.images) == len(self.mask_paths))
        if len(self.images) == 0:
            raise RuntimeError("Found 0 images in subfolders of: \
                " + self.root + "\n")
        self._indices = np.array(range(-1, 19))
        self._classes = np.array([0, 7, 8, 11, 12, 13, 17, 19, 20, 21, 22,
                                  23, 24, 25, 26, 27, 28, 31, 32, 33])
        self._key = np.array([-1, -1, -1, -1, -1, -1,
                              -1, -1,  0,  1, -1, -1, 
                              2,   3,  4, -1, -1, -1,
                              5,  -1,  6,  7,  8,  9,
                              10, 11, 12, 13, 14, 15,
                              -1, -1, 16, 17, 18])
        self._mapping = np.array(range(-1, len(self._key)-1)).astype('int32')

    def _class_to_index(self, mask):
        # assert the values
        values = np.unique(mask)
        for i in range(len(values)):
            assert(values[i] in self._mapping)
        index = np.digitize(mask.ravel(), self._mapping, right=True)
        return self._key[index].reshape(mask.shape)

    def __getitem__(self, index):
        img = Image.open(self.images[index]).convert('RGB')
        mask = Image.open(self.mask_paths[index])
        if self.mode == 'testval':
            img, mask = self._testval_transform(img, mask)
        elif self.mode == 'val':
            img, mask = self._val_transform(img, mask)
        elif self.mode == 'train':
            img, mask = self._train_transform(img, mask)

        if self.transform is not None:
            img = self.transform(img)
        if self.target_transform is not None:
            mask = self.target_transform(mask)
        return img, mask

    def _mask_transform(self, mask):
        target = self._class_to_index(np.array(mask).astype('int32'))
        return torch.from_numpy(target).long()

    def __len__(self):
        return len(self.images)


def get_city_pairs(folder, split='val'):
    def get_path_pairs(img_folder, mask_folder):
        img_paths = []  
        mask_paths = []  
        for root, directories, files in os.walk(img_folder):
            for filename in files:
                if filename.endswith(".png"):
                    imgpath = os.path.join(root, filename)
                    foldername = os.path.basename(os.path.dirname(imgpath))
                    maskname = filename.replace('leftImg8bit','gtFine_labelIds')
                    maskpath = os.path.join(mask_folder, foldername, maskname)
                    if os.path.isfile(imgpath) and os.path.isfile(maskpath):
                        img_paths.append(imgpath)
                        mask_paths.append(maskpath)
                    else:
                        print('cannot find the mask or image:', imgpath, maskpath)
        print('Found {} images in the folder {}'.format(len(img_paths), img_folder))
        return img_paths, mask_paths

    img_folder = os.path.join(folder, 'leftImg8bit/' + split)
    mask_folder = os.path.join(folder, 'gtFine/'+ split)
    img_paths, mask_paths = get_path_pairs(img_folder, mask_folder)
    return img_paths, mask_paths