leaderboard-pr-bot's picture
Adding Evaluation Results
c4dc0a0 verified
|
raw
history blame
4.73 kB
metadata
license: apache-2.0
tags:
  - generated_from_trainer
base_model: amazingvince/zephyr-smol_llama-100m-sft-full
model-index:
  - name: zephyr-smol_llama-100m-dpo-full
    results: []

zephyr-smol_llama-100m-dpo-full

This model is a fine-tuned version of amazingvince/zephyr-smol_llama-100m-sft-full on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5465
  • Rewards/chosen: -0.0518
  • Rewards/rejected: -0.7661
  • Rewards/accuracies: 0.7170
  • Rewards/margins: 0.7143
  • Logps/rejected: -450.2018
  • Logps/chosen: -588.7877
  • Logits/rejected: -4.9602
  • Logits/chosen: -5.2468

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-07
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 2
  • total_train_batch_size: 16
  • total_eval_batch_size: 16
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 3

Training results

Training Loss Epoch Step Validation Loss Rewards/chosen Rewards/rejected Rewards/accuracies Rewards/margins Logps/rejected Logps/chosen Logits/rejected Logits/chosen
0.6549 0.26 1000 0.6037 -0.1205 -0.4850 0.6550 0.3644 -447.3903 -589.4750 -4.7410 -5.0341
0.5349 0.52 2000 0.5779 -0.0126 -0.5080 0.6770 0.4955 -447.6208 -588.3951 -4.8645 -5.1463
0.6029 0.77 3000 0.5657 0.0902 -0.4636 0.6900 0.5538 -447.1767 -587.3674 -5.0016 -5.2911
0.5273 1.03 4000 0.5596 0.0496 -0.5449 0.7040 0.5944 -447.9891 -587.7738 -4.9972 -5.2892
0.5 1.29 5000 0.5557 0.0585 -0.6110 0.7050 0.6695 -448.6505 -587.6843 -5.0108 -5.3047
0.5056 1.55 6000 0.5499 0.0054 -0.6719 0.7130 0.6773 -449.2598 -588.2154 -4.9988 -5.2907
0.4608 1.81 7000 0.5500 -0.0376 -0.7494 0.7030 0.7118 -450.0341 -588.6455 -5.0549 -5.3406
0.426 2.07 8000 0.5472 -0.0106 -0.7021 0.7100 0.6916 -449.5617 -588.3751 -4.9750 -5.2626
0.3875 2.32 9000 0.5464 -0.0011 -0.7171 0.7140 0.7159 -449.7113 -588.2810 -4.9935 -5.2796
0.397 2.58 10000 0.5462 -0.0391 -0.7566 0.7190 0.7175 -450.1064 -588.6602 -4.9737 -5.2618
0.4486 2.84 11000 0.5459 -0.0493 -0.7667 0.7110 0.7174 -450.2074 -588.7629 -4.9569 -5.2441

Framework versions

  • Transformers 4.35.0
  • Pytorch 2.1.0
  • Datasets 2.14.6
  • Tokenizers 0.14.1

Open LLM Leaderboard Evaluation Results

Detailed results can be found here

Metric Value
Avg. 29.37
AI2 Reasoning Challenge (25-Shot) 25.00
HellaSwag (10-Shot) 28.54
MMLU (5-Shot) 25.18
TruthfulQA (0-shot) 45.75
Winogrande (5-shot) 51.07
GSM8k (5-shot) 0.68