File size: 22,129 Bytes
6a9c34e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4d0ea8d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6a9c34e
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
import math
from typing import Optional, Tuple, Union, List, Dict

import torch
import torch.nn as nn
import torch.nn.functional as F
from einops import rearrange, repeat
from transformers import PreTrainedModel, LlamaConfig
from transformers.modeling_outputs import BaseModelOutputWithPast, CausalLMOutputWithPast
from transformers.models.llama.modeling_llama import (
    LlamaRMSNorm,
    LlamaRotaryEmbedding,
    LlamaLinearScalingRotaryEmbedding,
    LlamaDynamicNTKScalingRotaryEmbedding,
    LlamaMLP,
    apply_rotary_pos_emb,
    repeat_kv,
)
from transformers.cache_utils import Cache, DynamicCache, StaticCache


class DiffLLaMAConfig(LlamaConfig):
    """
    Configuration class for the DiffLLaMA model.
    Inherits from LlamaConfig and can be extended with additional parameters.
    """
    model_type = "diff_llama"
    
    def __init__(
        self,
        num_kv_heads: int = 8,
        intermediate_size: int = 3072,
        rope_scaling: Optional[Dict[str, Union[str, float]]] = None,
        **kwargs
    ):
        super().__init__(**kwargs)
        self.num_kv_heads = num_kv_heads
        self.intermediate_size = intermediate_size
        self.rope_scaling = rope_scaling or {"type": "linear", "factor": 1.0}
        # Add any custom configuration parameters here


def init_method(tensor):
    """Initialize tensor with Kaiming uniform initialization."""
    nn.init.kaiming_uniform_(tensor, a=math.sqrt(5))

def lambda_init_fn(depth):
    """Compute lambda initialization value based on layer depth."""
    return 0.8 - 0.6 * math.exp(-0.3 * depth)

class MultiheadDiffAttn(nn.Module):
    def __init__(self, config: DiffLLaMAConfig, layer_idx: Optional[int] = None):
        super().__init__()
        self.config = config
        self.hidden_size = config.hidden_size
        self.num_heads = config.num_attention_heads
        self.head_dim = self.hidden_size // self.num_heads
        self.num_key_value_heads = config.num_kv_heads
        self.num_key_value_groups = self.num_heads // self.num_key_value_heads
        self.max_position_embeddings = config.max_position_embeddings
        self.rope_theta = config.rope_theta

        self.q_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=False)
        self.k_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=False)
        self.v_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=False)
        self.o_proj = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=False)

        self.scaling = self.head_dim ** -0.5

        self.rotary_emb = self._init_rope()

        self.lambda_init = lambda_init_fn(layer_idx if layer_idx is not None else 0)
        self.lambda_q1 = nn.Parameter(torch.zeros(self.head_dim, dtype=torch.float32).normal_(mean=0, std=0.1))
        self.lambda_k1 = nn.Parameter(torch.zeros(self.head_dim, dtype=torch.float32).normal_(mean=0, std=0.1))
        self.lambda_q2 = nn.Parameter(torch.zeros(self.head_dim, dtype=torch.float32).normal_(mean=0, std=0.1))
        self.lambda_k2 = nn.Parameter(torch.zeros(self.head_dim, dtype=torch.float32).normal_(mean=0, std=0.1))

        self.subln = nn.LayerNorm(self.num_heads * self.head_dim, elementwise_affine=False)

        self._init_rope()

    def _init_rope(self):
        if not hasattr(self.config, 'rope_scaling') or self.config.rope_scaling is None:
            self.rotary_emb = LlamaRotaryEmbedding(
                self.head_dim,
                max_position_embeddings=self.max_position_embeddings,
                base=self.rope_theta,
            )
        else:
            scaling_type = self.config.rope_scaling.get("type", "linear")
            scaling_factor = self.config.rope_scaling.get("factor", 1.0)
            if scaling_type == "linear":
                self.rotary_emb = LlamaLinearScalingRotaryEmbedding(
                    self.head_dim,
                    max_position_embeddings=self.max_position_embeddings,
                    scaling_factor=scaling_factor,
                    base=self.rope_theta,
                )
            elif scaling_type == "dynamic":
                self.rotary_emb = LlamaDynamicNTKScalingRotaryEmbedding(
                    self.head_dim,
                    max_position_embeddings=self.max_position_embeddings,
                    scaling_factor=scaling_factor,
                    base=self.rope_theta,
                )
            else:
                raise ValueError(f"Unknown RoPE scaling type {scaling_type}")

    def forward(
        self,
        hidden_states: torch.Tensor,
        attention_mask: Optional[torch.Tensor] = None,
        position_ids: Optional[torch.LongTensor] = None,
        past_key_value: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
        output_attentions: bool = False,
        use_cache: bool = False,
        cache_position: Optional[torch.LongTensor] = None,
    ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
        batch_size, seq_length, _ = hidden_states.size()

        query_states = self.q_proj(hidden_states)
        key_states = self.k_proj(hidden_states)
        value_states = self.v_proj(hidden_states)

        query_states = query_states.view(batch_size, seq_length, self.num_heads, self.head_dim).transpose(1, 2)
        key_states = key_states.view(batch_size, seq_length, self.num_key_value_heads, self.head_dim).transpose(1, 2)
        value_states = value_states.view(batch_size, seq_length, self.num_key_value_heads, self.head_dim).transpose(1, 2)

        kv_seq_len = key_states.shape[-2]
        if past_key_value is not None:
            kv_seq_len += past_key_value[0].shape[-2]
        cos, sin = self.rotary_emb(value_states, position_ids)
        query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)

        if past_key_value is not None:
            key_states = torch.cat([past_key_value[0], key_states], dim=2)
            value_states = torch.cat([past_key_value[1], value_states], dim=2)

        past_key_value = (key_states, value_states) if use_cache else None

        # Repeat k/v heads if n_kv_heads < n_heads
        key_states = repeat_kv(key_states, self.num_key_value_groups)
        value_states = repeat_kv(value_states, self.num_key_value_groups)

        attn_weights = torch.matmul(query_states, key_states.transpose(-1, -2))
        attn_weights = attn_weights * self.scaling

        lambda_1 = torch.exp(torch.sum(self.lambda_q1 * self.lambda_k1))
        lambda_2 = torch.exp(torch.sum(self.lambda_q2 * self.lambda_k2))
        lambda_full = lambda_1 - lambda_2 + self.lambda_init

        # Apply differential attention
        attn_weights_diff = attn_weights[:, :, :, :-1] - lambda_full * attn_weights[:, :, :, 1:]
        attn_weights = torch.cat([attn_weights_diff, attn_weights[:, :, :, -1:]], dim=-1)

        if attention_mask is not None:
            # Expand attention_mask
            attention_mask = attention_mask.unsqueeze(1).unsqueeze(2)
            attention_mask = attention_mask.expand(batch_size, self.num_heads, seq_length, attention_mask.size(-1))
            attention_mask = attention_mask.to(dtype=attn_weights.dtype)  # Convert to same dtype as attn_weights
            
            # Use a large negative number instead of negative infinity
            attn_weights = attn_weights + (1.0 - attention_mask) * -10000.0

        attn_weights = F.softmax(attn_weights, dim=-1)

        attn_output = torch.matmul(attn_weights, value_states)
        attn_output = attn_output.transpose(1, 2).contiguous().view(batch_size, seq_length, self.num_heads * self.head_dim)

        attn_output = self.subln(attn_output)
        attn_output = attn_output * (1 - self.lambda_init)

        attn_output = self.o_proj(attn_output)

        if not output_attentions:
            attn_weights = None

        return attn_output, attn_weights, past_key_value


class DiffLLaMALayer(nn.Module):
    """
    A single layer of the DiffLLaMA model, consisting of multi-head differential attention and a feed-forward network.
    Incorporates gradient checkpointing for memory efficiency.
    """
    def __init__(self, config: DiffLLaMAConfig, layer_idx: int):
        super().__init__()
        self.input_layernorm = LlamaRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
        self.self_attn = MultiheadDiffAttn(
            config=config,
            layer_idx=layer_idx
        )
        self.post_attention_layernorm = LlamaRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
        self.mlp = LlamaMLP(config)

    def forward(
        self,
        hidden_states: torch.Tensor,
        attention_mask: Optional[torch.Tensor] = None,
        position_ids: Optional[torch.LongTensor] = None,
        past_key_value: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
        output_attentions: bool = False,
        use_cache: bool = False,
        cache_position: Optional[torch.LongTensor] = None,
    ) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
        residual = hidden_states
        hidden_states = self.input_layernorm(hidden_states)

        # Self Attention
        hidden_states, self_attn_weights, present_key_value = self.self_attn(
            hidden_states=hidden_states,
            attention_mask=attention_mask,
            position_ids=position_ids,
            past_key_value=past_key_value,
            output_attentions=output_attentions,
            use_cache=use_cache,
            cache_position=cache_position,
        )
        hidden_states = residual + hidden_states

        # Fully Connected
        residual = hidden_states
        hidden_states = self.post_attention_layernorm(hidden_states)
        hidden_states = self.mlp(hidden_states)
        hidden_states = residual + hidden_states

        outputs = (hidden_states,)

        if output_attentions:
            outputs += (self_attn_weights,)

        if use_cache:
            outputs += (present_key_value,)

        return outputs

class DiffLLaMAModel(PreTrainedModel):
    """
    DiffLLaMAModel is a variant of LLaMA with differential attention mechanisms.
    Incorporates mixed precision training and gradient checkpointing for optimized performance.
    """
    config_class = DiffLLaMAConfig
        
    def __init__(self, config: DiffLLaMAConfig):
        super().__init__(config)
        self.config = config

        self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size)
        self.layers = nn.ModuleList([
            DiffLLaMALayer(config, layer_idx=i) for i in range(config.num_hidden_layers)
        ])
        self.norm = LlamaRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
        
        self.rotary_emb = LlamaRotaryEmbedding(
            dim=config.hidden_size // config.num_attention_heads,
            max_position_embeddings=config.max_position_embeddings,
            base=config.rope_theta,
        )
        
        self.gradient_checkpointing = False

        # Initialize weights and apply final processing
        self.post_init()
    
    def forward(
            self,
            input_ids: Optional[torch.LongTensor] = None,
            attention_mask: Optional[torch.Tensor] = None,
            position_ids: Optional[torch.LongTensor] = None,
            past_key_values: Optional[List[Tuple[torch.FloatTensor, torch.FloatTensor]]] = None,
            inputs_embeds: Optional[torch.FloatTensor] = None,
            use_cache: Optional[bool] = None,
            output_attentions: Optional[bool] = None,
            output_hidden_states: Optional[bool] = None,
            return_dict: Optional[bool] = None,
            cache_position: Optional[torch.LongTensor] = None,
        ) -> Union[Tuple, BaseModelOutputWithPast]:
        
        """
        Forward pass for the DiffLLaMAModel with performance optimizations.

        Args:
            input_ids: Input token IDs.
            attention_mask: Attention mask.
            position_ids: Position IDs.
            past_key_values: Past key and value tensors for caching.
            inputs_embeds: Input embeddings.
            use_cache: Whether to return present key and value for caching.
            output_attentions: Whether to output attention weights.
            output_hidden_states: Whether to output hidden states.
            return_dict: Whether to return a dict.
            cache_position: Position IDs for caching.

        Returns:
            Model output, either as a tuple or a BaseModelOutputWithPast.
        """
        output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
        output_hidden_states = (
            output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
        )
        use_cache = use_cache if use_cache is not None else self.config.use_cache
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        if input_ids is not None and inputs_embeds is not None:
            raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
        elif input_ids is not None:
            batch_size, seq_length = input_ids.shape
        elif inputs_embeds is not None:
            batch_size, seq_length, _ = inputs_embeds.shape
        else:
            raise ValueError("You have to specify either input_ids or inputs_embeds")

        if position_ids is None:
            device = input_ids.device if input_ids is not None else inputs_embeds.device
            position_ids = torch.arange(seq_length, dtype=torch.long, device=device)
            position_ids = position_ids.unsqueeze(0).expand(batch_size, -1)

        if inputs_embeds is None:
            inputs_embeds = self.embed_tokens(input_ids)

        # Position embeddings are handled within each layer; remove pre-computation
        # Removed the following lines:
        # cos, sin = self.rotary_emb(position_ids, seq_len=seq_length)
        # position_embeddings = (cos, sin)

        hidden_states = inputs_embeds

        # Attention mask
        if attention_mask is None:
            attention_mask = torch.ones((batch_size, seq_length), device=hidden_states.device)

        # Initialize lists to store outputs
        all_hidden_states = () if output_hidden_states else None
        all_self_attns = () if output_attentions else None
        next_cache = () if use_cache else None

        for idx, layer in enumerate(self.layers):
            if output_hidden_states:
                all_hidden_states += (hidden_states,)

            layer_outputs = layer(
                hidden_states=hidden_states,
                attention_mask=attention_mask,
                position_ids=position_ids,
                past_key_value=past_key_values[idx] if past_key_values is not None else None,
                output_attentions=output_attentions,
                use_cache=use_cache,
                cache_position=cache_position,
            )

            # Correctly unpack layer_outputs based on the configuration
            hidden_states = layer_outputs[0]
            
            if use_cache:
                present_key_value = layer_outputs[-1]
                next_cache += (present_key_value,)

            if output_attentions:
                self_attn_weights = layer_outputs[1]
                all_self_attns += (self_attn_weights,)

        hidden_states = self.norm(hidden_states)

        if output_hidden_states:
            all_hidden_states += (hidden_states,)

        next_cache = None
        if use_cache:
            next_cache = (
                next_cache.to_legacy_cache() if isinstance(next_cache, Cache) else next_cache
            )
        if not return_dict:
            return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None)

        return BaseModelOutputWithPast(
            last_hidden_state=hidden_states,
            past_key_values=next_cache,
            hidden_states=all_hidden_states,
            attentions=all_self_attns,
        )

class DiffLLaMAForCausalLM(PreTrainedModel):
    """
    DiffLLaMA model with a causal language modeling head.
    Incorporates mixed precision training for optimized performance.
    """
    config_class = DiffLLaMAConfig
    _tied_weights_keys = ["lm_head.weight"]

    def __init__(self, config: DiffLLaMAConfig):
        super().__init__(config)
        self.model = DiffLLaMAModel(config)
        self.vocab_size = config.vocab_size
        self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)

        # Initialize weights and apply final processing
        self.post_init()

    def get_input_embeddings(self):
        """Return input embeddings."""
        return self.model.get_input_embeddings()

    def set_input_embeddings(self, value):
        """Set input embeddings."""
        self.model.set_input_embeddings(value)

    def get_output_embeddings(self):
        """Return output embeddings (language modeling head)."""
        return self.lm_head

    def set_output_embeddings(self, new_embeddings):
        """Set output embeddings (language modeling head)."""
        self.lm_head = new_embeddings

    def set_decoder(self, decoder):
        """Set the decoder model."""
        self.model = decoder

    def get_decoder(self):
        """Get the decoder model."""
        return self.model

    def forward(
        self,
        input_ids: Optional[torch.LongTensor] = None,
        attention_mask: Optional[torch.Tensor] = None,
        position_ids: Optional[torch.LongTensor] = None,
        past_key_values: Optional[List[Tuple[torch.FloatTensor, torch.FloatTensor]]] = None,
        inputs_embeds: Optional[torch.FloatTensor] = None,
        labels: Optional[torch.LongTensor] = None,
        use_cache: Optional[bool] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
        cache_position: Optional[torch.LongTensor] = None,
    ) -> Union[Tuple, CausalLMOutputWithPast]:
        """
        Forward pass for DiffLLaMAForCausalLM with performance optimizations.

        Args:
            input_ids: Input token IDs.
            attention_mask: Attention mask.
            position_ids: Position IDs.
            past_key_values: Past key and value tensors for caching.
            inputs_embeds: Input embeddings.
            labels: Labels for computing the loss.
            use_cache: Whether to return past key and value tensors.
            output_attentions: Whether to output attention weights.
            output_hidden_states: Whether to output hidden states.
            return_dict: Whether to return a dict.
            cache_position: Position IDs for caching.

        Returns:
            CausalLMOutputWithPast or tuple containing loss and logits.
        """
        output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
        output_hidden_states = (
            output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
        )
        use_cache = use_cache if use_cache is not None else self.config.use_cache
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        # Get outputs from the model
        outputs = self.model(
            input_ids=input_ids,
            attention_mask=attention_mask,
            position_ids=position_ids,
            past_key_values=past_key_values,
            inputs_embeds=inputs_embeds,
            use_cache=use_cache,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
            cache_position=cache_position,
        )

        hidden_states = outputs.last_hidden_state if return_dict else outputs[0]
        logits = self.lm_head(hidden_states)

        loss = None
        if labels is not None:
            # Shift so that tokens < n predict n
            shift_logits = logits[..., :-1, :].contiguous()
            shift_labels = labels[..., 1:].contiguous()
            # Flatten the tokens
            loss_fct = nn.CrossEntropyLoss()
            shift_logits = shift_logits.view(-1, self.config.vocab_size)
            shift_labels = shift_labels.view(-1)
            # Compute loss using mixed precision if enabled
            if shift_logits.dtype == torch.float16:
                with torch.cuda.amp.autocast(enabled=False):
                    loss = loss_fct(shift_logits, shift_labels)
            else:
                loss = loss_fct(shift_logits, shift_labels)

        if not return_dict:
            if use_cache:
                return ((loss, logits) + outputs[1:]) if loss is not None else (logits,) + outputs[1:]
            else:
                return (loss, logits) if loss is not None else (logits,)

        return CausalLMOutputWithPast(
            loss=loss,
            logits=logits,
            past_key_values=outputs.past_key_values,
            hidden_states=outputs.hidden_states,
            attentions=outputs.attentions,
        )
    def prepare_inputs_for_generation(
        self, input_ids, past_key_values=None, attention_mask=None, inputs_embeds=None, **kwargs
    ):
        if past_key_values:
            input_ids = input_ids[:, -1:]

        # if `inputs_embeds` are passed, we only want to use them in the 1st generation step
        if inputs_embeds is not None and past_key_values is None:
            model_inputs = {"inputs_embeds": inputs_embeds}
        else:
            model_inputs = {"input_ids": input_ids}

        model_inputs.update(
            {
                "past_key_values": past_key_values,
                "use_cache": kwargs.get("use_cache"),
                "attention_mask": attention_mask,
                "cache_position": kwargs.get("cache_position"),
            }
        )
        return model_inputs