File size: 2,699 Bytes
214357d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
164d061
214357d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
---
base_model: distilbert-base-cased
datasets:
- conll2003
license: apache-2.0
metrics:
- precision
- recall
- f1
- accuracy
tags:
- generated_from_trainer
model-index:
- name: distilbert-finetuned-ner
  results:
  - task:
      type: token-classification
      name: Token Classification
    dataset:
      name: conll2003
      type: conll2003
      config: conll2003
      split: validation
      args: conll2003
    metrics:
    - type: precision
      value: 1.0
      name: Precision
    - type: recall
      value: 1.0
      name: Recall
    - type: f1
      value: 1.0
      name: F1
    - type: accuracy
      value: 1.0
      name: Accuracy
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# distilbert-finetuned-ner

This model is a fine-tuned version of [distilbert-base-cased](https://huggingface.co/distilbert-base-cased) on the conll2003 dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0711
- Precision: 1.0
- Recall: 1.0
- F1: 1.0
- Accuracy: 1.0

## Model description

The distilbert-finetuned-ner model is designed for Named Entity Recognition (NER) tasks. It is based on the DistilBERT architecture, which is a smaller, faster, and lighter version of BERT. DistilBERT retains 97% of BERT's language understanding while being 60% faster and 40% smaller, making it efficient for deployment in production systems.

## Intended uses & limitations

More information needed

## Training and evaluation data

The model is fine-tuned on the CoNLL-2003 dataset, a widely-used dataset for training and evaluating NER systems. The dataset includes four types of named entities: Persons (PER), Organizations (ORG), Locations (LOC), and Miscellaneous (MISC).

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3

### Training results

| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1  | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:---:|:--------:|
| 0.0908        | 1.0   | 1756 | 0.0887          | 1.0       | 1.0    | 1.0 | 1.0      |
| 0.0467        | 2.0   | 3512 | 0.0713          | 1.0       | 1.0    | 1.0 | 1.0      |
| 0.0276        | 3.0   | 5268 | 0.0711          | 1.0       | 1.0    | 1.0 | 1.0      |


### Framework versions

- Transformers 4.41.2
- Pytorch 2.3.1
- Datasets 2.20.0
- Tokenizers 0.19.1