File size: 2,122 Bytes
7611e5c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 |
---
license: apache-2.0
tags:
- summarization
- generated_from_trainer
datasets:
- cnn_dailymail
metrics:
- rouge
model-index:
- name: bart-base-finetuned-cnn_dailymail
results:
- task:
name: Sequence-to-sequence Language Modeling
type: text2text-generation
dataset:
name: cnn_dailymail
type: cnn_dailymail
config: 3.0.0
split: train
args: 3.0.0
metrics:
- name: Rouge1
type: rouge
value: 0.35105989316705805
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# bart-base-finetuned-cnn_dailymail
This model is a fine-tuned version of [facebook/bart-base](https://huggingface.co/facebook/bart-base) on the cnn_dailymail dataset.
It achieves the following results on the evaluation set:
- Loss: 1.5396
- Rouge1: 0.3511
- Rouge2: 0.1925
- Rougel: 0.3086
- Rougelsum: 0.3292
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5.6e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 4
### Training results
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum |
|:-------------:|:-----:|:------:|:---------------:|:------:|:------:|:------:|:---------:|
| 1.9486 | 1.0 | 35890 | 1.5941 | 0.3498 | 0.1893 | 0.3063 | 0.3272 |
| 1.6706 | 2.0 | 71780 | 1.5601 | 0.3503 | 0.1916 | 0.3079 | 0.3279 |
| 1.4809 | 3.0 | 107670 | 1.5423 | 0.3520 | 0.1923 | 0.3086 | 0.3295 |
| 1.3293 | 4.0 | 143560 | 1.5396 | 0.3511 | 0.1925 | 0.3086 | 0.3292 |
### Framework versions
- Transformers 4.24.0
- Pytorch 1.12.1+cu113
- Datasets 2.7.1
- Tokenizers 0.13.2
|