cased / retrieval_cased.py
altndrr's picture
Update model to latest code (#6)
cd16641
raw
history blame
9.34 kB
import tarfile
from collections import defaultdict
from pathlib import Path
import faiss
import numpy as np
import pyarrow as pa
import requests
from tqdm import tqdm
__all__ = ["RetrievalDatabase", "download_retrieval_databases"]
RETRIEVAL_DATABASES_URLS = {
"cc12m": {
"url": "https://storage-cased.alessandroconti.me/cc12m.tar.gz",
"cache_subdir": "./cc12m/vit-l-14/",
},
}
def download_retrieval_databases(cache_dir: str = "~/.cache/cased"):
"""Download data if needed.
Args:
cache_dir (str): Path to cache directory. Defaults to "~/.cache/cased".
"""
databases_path = Path(cache_dir, "databases")
for name, items in RETRIEVAL_DATABASES_URLS.items():
url = items["url"]
database_path = Path(databases_path, name)
if database_path.exists():
continue
# download data
target_path = Path(databases_path, name + ".tar.gz")
target_path.parent.mkdir(parents=True, exist_ok=True)
with requests.get(url, stream=True) as r:
r.raise_for_status()
total_bytes_size = int(r.headers.get("content-length", 0))
chunk_size = 8192
p_bar = tqdm(
desc="Downloading cc12m index",
total=total_bytes_size,
unit="iB",
unit_scale=True,
)
with open(target_path, "wb") as f:
for chunk in r.iter_content(chunk_size=chunk_size):
f.write(chunk)
p_bar.update(len(chunk))
p_bar.close()
# extract data
tar = tarfile.open(target_path, "r:gz")
tar.extractall(target_path.parent)
tar.close()
target_path.unlink()
class RetrievalDatabaseMetadataProvider:
"""Metadata provider for the retrieval database.
Args:
metadata_dir (str): Path to the metadata directory.
"""
def __init__(self, metadata_dir: str):
metadatas = [str(a) for a in sorted(Path(metadata_dir).glob("**/*")) if a.is_file()]
self.table = pa.concat_tables(
[
pa.ipc.RecordBatchFileReader(pa.memory_map(metadata, "r")).read_all()
for metadata in metadatas
]
)
def get(self, ids):
"""Get the metadata for the given ids.
Args:
ids (list): List of ids.
"""
columns = self.table.schema.names
end_ids = [i + 1 for i in ids]
t = pa.concat_tables([self.table[start:end] for start, end in zip(ids, end_ids)])
return t.select(columns).to_pandas().to_dict("records")
class RetrievalDatabase:
"""Retrieval database.
Args:
database_name (str): Name of the database.
cache_dir (str): Path to cache directory. Defaults to "~/.cache/cased".
"""
def __init__(self, database_name: str, cache_dir: str = "~/.cache/cased"):
assert database_name in RETRIEVAL_DATABASES_URLS.keys(), (
f"Database name should be one of "
f"{list(RETRIEVAL_DATABASES_URLS.keys())}, got {database_name}."
)
database_dir = Path(cache_dir) / "databases"
database_dir = database_dir / RETRIEVAL_DATABASES_URLS[database_name]["cache_subdir"]
self._database_dir = database_dir
image_index_fp = Path(database_dir) / "image.index"
text_index_fp = Path(database_dir) / "text.index"
image_index = (
faiss.read_index(str(image_index_fp), faiss.IO_FLAG_MMAP | faiss.IO_FLAG_READ_ONLY)
if image_index_fp.exists()
else None
)
text_index = (
faiss.read_index(str(text_index_fp), faiss.IO_FLAG_MMAP | faiss.IO_FLAG_READ_ONLY)
if text_index_fp.exists()
else None
)
metadata_dir = str(Path(database_dir) / "metadata")
metadata_provider = RetrievalDatabaseMetadataProvider(metadata_dir)
self._image_index = image_index
self._text_index = text_index
self._metadata_provider = metadata_provider
def _map_to_metadata(self, indices: list, distances: list, embs: list, num_images: int):
"""Map the indices to metadata.
Args:
indices (list): List of indices.
distances (list): List of distances.
embs (list): List of results embeddings.
num_images (int): Number of images.
"""
results = []
metas = self._metadata_provider.get(indices[:num_images])
for key, (d, i, emb) in enumerate(zip(distances, indices, embs)):
output = {}
meta = None if key + 1 > len(metas) else metas[key]
if meta is not None:
output.update(self._meta_to_dict(meta))
output["id"] = i.item()
output["similarity"] = d.item()
output["sample_z"] = emb.tolist()
results.append(output)
return results
def _meta_to_dict(self, metadata):
"""Convert metadata to dict.
Args:
metadata (dict): Metadata.
"""
output = {}
for k, v in metadata.items():
if isinstance(v, bytes):
v = v.decode()
elif type(v).__module__ == np.__name__:
v = v.item()
output[k] = v
return output
def _get_connected_components(self, neighbors):
"""Find connected components in a graph.
Args:
neighbors (dict): Dictionary of neighbors.
"""
seen = set()
def component(node):
r = []
nodes = {node}
while nodes:
node = nodes.pop()
seen.add(node)
nodes |= set(neighbors[node]) - seen
r.append(node)
return r
u = []
for node in neighbors:
if node not in seen:
u.append(component(node))
return u
def _deduplicate_embeddings(self, embeddings, threshold=0.94):
"""Deduplicate embeddings.
Args:
embeddings (np.matrix): Embeddings to deduplicate.
threshold (float): Threshold to use for deduplication. Default is 0.94.
"""
index = faiss.IndexFlatIP(embeddings.shape[1])
index.add(embeddings)
l, _, indices = index.range_search(embeddings, threshold)
same_mapping = defaultdict(list)
for i in range(embeddings.shape[0]):
start = l[i]
end = l[i + 1]
for j in indices[start:end]:
same_mapping[int(i)].append(int(j))
groups = self._get_connected_components(same_mapping)
non_uniques = set()
for g in groups:
for e in g[1:]:
non_uniques.add(e)
return set(list(non_uniques))
def query(
self, query: np.matrix, modality: str = "text", num_samples: int = 10
) -> list[list[dict]]:
"""Query the database.
Args:
query (np.matrix): Query to search.
modality (str): Modality to search. One of `image` or `text`. Default to `text`.
num_samples (int): Number of samples to return. Default is 40.
"""
index = self._image_index if modality == "image" else self._text_index
distances, indices, embeddings = index.search_and_reconstruct(query, num_samples)
results = [indices[i] for i in range(len(indices))]
nb_results = [np.where(r == -1)[0] for r in results]
total_distances = []
total_indices = []
total_embeddings = []
for i in range(len(results)):
num_res = nb_results[i][0] if len(nb_results[i]) > 0 else len(results[i])
result_indices = results[i][:num_res]
result_distances = distances[i][:num_res]
result_embeddings = embeddings[i][:num_res]
# normalise embeddings
l2 = np.atleast_1d(np.linalg.norm(result_embeddings, 2, -1))
l2[l2 == 0] = 1
result_embeddings = result_embeddings / np.expand_dims(l2, -1)
# deduplicate embeddings
local_indices_to_remove = self._deduplicate_embeddings(result_embeddings)
indices_to_remove = set()
for local_index in local_indices_to_remove:
indices_to_remove.add(result_indices[local_index])
curr_indices = []
curr_distances = []
curr_embeddings = []
for ind, dis, emb in zip(result_indices, result_distances, result_embeddings):
if ind not in indices_to_remove:
indices_to_remove.add(ind)
curr_indices.append(ind)
curr_distances.append(dis)
curr_embeddings.append(emb)
total_indices.append(curr_indices)
total_distances.append(curr_distances)
total_embeddings.append(curr_embeddings)
if len(total_distances) == 0:
return []
total_results = []
for i in range(len(total_distances)):
results = self._map_to_metadata(
total_indices[i], total_distances[i], total_embeddings[i], num_samples
)
total_results.append(results)
return total_results