language:
- ar
pipeline_tag: text-generation
Model Card for Model ID
This modelcard aims to be a base template for new models. It has been generated using this raw template.
Model Details
Model Description
- Developed by: [More Information Needed]
- Shared by [optional]: [More Information Needed]
- Model type: [More Information Needed]
- Language(s) (NLP): [More Information Needed]
- License: [More Information Needed]
- Finetuned from model [optional]: [More Information Needed]
Model Sources [optional]
- Repository: [More Information Needed]
- Paper [optional]: [More Information Needed]
- Demo [optional]: [More Information Needed]
Uses
Direct Use
[More Information Needed]
Downstream Use [optional]
[More Information Needed]
Out-of-Scope Use
[More Information Needed]
Bias, Risks, and Limitations
[More Information Needed]
Recommendations
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
How to Get Started with the Model
from transformers import GPT2Tokenizer from arabert.preprocess import ArabertPreprocessor from arabert.aragpt2.grover.modeling_gpt2 import GPT2LMHeadModel from pyarabic.araby import strip_tashkeel import pyarabic.trans model_name='alsubari/aragpt2-mega-pos-msa'
tokenizer = GPT2Tokenizer.from_pretrained('alsubari/aragpt2-mega-pos-msa') model = GPT2LMHeadModel.from_pretrained('alsubari/aragpt2-mega-pos-msa').to("cuda")
arabert_prep = ArabertPreprocessor(model_name='aubmindlab/aragpt2-mega')
prml=['اعراب الجملة :', ' صنف الكلمات من الجملة :']
text='تعلَّمْ من أخطائِكَ'
text=arabert_prep.preprocess(strip_tashkeel(text))
generation_args = {
'pad_token_id':tokenizer.eos_token_id,
'max_length': 256,
'num_beams':20,
'no_repeat_ngram_size': 3,
'top_k': 20,
'top_p': 0.1, # Consider all tokens with non-zero probability
'do_sample': True,
'repetition_penalty':2.0
}
input_text = f'<|startoftext|>Instruction: {prml[1]} {text}<|pad|>Answer:'
input_ids = tokenizer.encode(input_text, return_tensors='pt').to("cuda")
output_ids = model.generate(input_ids=input_ids,**generation_args)
output_text = tokenizer.decode(output_ids[0],skip_special_tokens=True).split('Answer:')[1]
answer_pose=pyarabic.trans.delimite_language(output_text, start="", end="")
print(answer_pose)# تعلم : تعلم : Verb من : من : Relative pronoun أخطائك : اخطا : Noun ك : Personal pronunction
input_text = f'<|startoftext|>Instruction: {prml[0]} {text}<|pad|>Answer:' input_ids = tokenizer.encode(input_text, return_tensors='pt').to("cuda") output_ids = model.generate(input_ids=input_ids,**generation_args) output_text = tokenizer.decode(output_ids[0],skip_special_tokens=True).split('Answer:')[1]
print(output_text)#تعلم : تعلم : فعل ، مفرد المخاطب للمذكر ، فعل مضارع ، مرفوع من : من : حرف جر أخطائك : اخطا : اسم ، جمع المذكر ، مجرور ك : ضمير ، مفرد المتكلم
Training Details
Training Data
[More Information Needed]
Training Procedure
Preprocessing [optional]
[More Information Needed]
Training Hyperparameters
- Training regime: [More Information Needed]
Speeds, Sizes, Times [optional]
[More Information Needed]
Evaluation
Testing Data, Factors & Metrics
Testing Data
[More Information Needed]
Factors
[More Information Needed]
Metrics
[More Information Needed]
Results
[More Information Needed]
Summary
Model Examination [optional]
[More Information Needed]
Environmental Impact
Carbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).
- Hardware Type: [More Information Needed]
- Hours used: [More Information Needed]
- Cloud Provider: [More Information Needed]
- Compute Region: [More Information Needed]
- Carbon Emitted: [More Information Needed]
Technical Specifications [optional]
Model Architecture and Objective
[More Information Needed]
Compute Infrastructure
[More Information Needed]
Hardware
[More Information Needed]
Software
[More Information Needed]
Citation [optional]
BibTeX:
[More Information Needed]
APA:
[More Information Needed]
Glossary [optional]
[More Information Needed]
More Information [optional]
[More Information Needed]
Model Card Authors [optional]
[More Information Needed]
Model Card Contact
[More Information Needed]