alokabhishek
commited on
Updated Readme
Browse files
README.md
CHANGED
@@ -1,16 +1,147 @@
|
|
1 |
---
|
|
|
2 |
license: apache-2.0
|
3 |
pipeline_tag: text-generation
|
4 |
tags:
|
5 |
-
-
|
6 |
-
|
7 |
-
|
8 |
-
-
|
9 |
-
|
10 |
-
|
|
|
11 |
---
|
12 |
|
13 |
-
# Model Card for Mistral-7B-Instruct-v0.2
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
14 |
|
15 |
The Mistral-7B-Instruct-v0.2 Large Language Model (LLM) is an instruct fine-tuned version of the Mistral-7B-v0.2.
|
16 |
|
|
|
1 |
---
|
2 |
+
library_name: transformers
|
3 |
license: apache-2.0
|
4 |
pipeline_tag: text-generation
|
5 |
tags:
|
6 |
+
- ExLlamaV2
|
7 |
+
- 5bit
|
8 |
+
- Mistral
|
9 |
+
- Mistral-7B
|
10 |
+
- quantized
|
11 |
+
- exl2
|
12 |
+
- 6.0-bpw
|
13 |
---
|
14 |
|
15 |
+
# Model Card for alokabhishek/Mistral-7B-Instruct-v0.2-6.0-bpw-exl2
|
16 |
+
|
17 |
+
<!-- Provide a quick summary of what the model is/does. -->
|
18 |
+
This repo contains 6-bit quantized (using ExLlamaV2) model Mistral AI_'s Mistral-7B-Instruct-v0.2
|
19 |
+
|
20 |
+
|
21 |
+
|
22 |
+
## Model Details
|
23 |
+
|
24 |
+
- Model creator: [Mistral AI_](https://huggingface.co/mistralai)
|
25 |
+
- Original model: [Mistral-7B-Instruct-v0.2](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2)
|
26 |
+
|
27 |
+
|
28 |
+
### About quantization using ExLlamaV2
|
29 |
+
|
30 |
+
|
31 |
+
- ExLlamaV2 github repo: [ExLlamaV2 github repo](https://github.com/turboderp/exllamav2)
|
32 |
+
|
33 |
+
|
34 |
+
|
35 |
+
# How to Get Started with the Model
|
36 |
+
|
37 |
+
Use the code below to get started with the model.
|
38 |
+
|
39 |
+
|
40 |
+
## How to run from Python code
|
41 |
+
|
42 |
+
#### First install the package
|
43 |
+
```shell
|
44 |
+
# Install ExLLamaV2
|
45 |
+
!git clone https://github.com/turboderp/exllamav2
|
46 |
+
!pip install -e exllamav2
|
47 |
+
```
|
48 |
+
|
49 |
+
#### Import
|
50 |
+
|
51 |
+
```python
|
52 |
+
from huggingface_hub import login, HfApi, create_repo
|
53 |
+
from torch import bfloat16
|
54 |
+
import locale
|
55 |
+
import torch
|
56 |
+
import os
|
57 |
+
```
|
58 |
+
|
59 |
+
#### set up variables
|
60 |
+
|
61 |
+
```python
|
62 |
+
# Define the model ID for the desired model
|
63 |
+
model_id = "alokabhishek/Mistral-7B-Instruct-v0.2-6.0-bpw-exl2"
|
64 |
+
BPW = 5.0
|
65 |
+
|
66 |
+
# define variables
|
67 |
+
model_name = model_id.split("/")[-1]
|
68 |
+
|
69 |
+
```
|
70 |
+
|
71 |
+
#### Download the quantized model
|
72 |
+
```shell
|
73 |
+
!git-lfs install
|
74 |
+
# download the model to loacl directory
|
75 |
+
!git clone https://{username}:{HF_TOKEN}@huggingface.co/{model_id} {model_name}
|
76 |
+
```
|
77 |
+
|
78 |
+
#### Run Inference on quantized model using
|
79 |
+
```shell
|
80 |
+
# Run model
|
81 |
+
!python exllamav2/test_inference.py -m {model_name}/ -p "Tell me a funny joke about Large Language Models meeting a Blackhole in an intergalactic Bar."
|
82 |
+
```
|
83 |
+
|
84 |
+
|
85 |
+
```python
|
86 |
+
import sys, os
|
87 |
+
|
88 |
+
sys.path.append(os.path.dirname(os.path.dirname(os.path.abspath(__file__))))
|
89 |
+
|
90 |
+
from exllamav2 import (
|
91 |
+
ExLlamaV2,
|
92 |
+
ExLlamaV2Config,
|
93 |
+
ExLlamaV2Cache,
|
94 |
+
ExLlamaV2Tokenizer,
|
95 |
+
)
|
96 |
+
|
97 |
+
from exllamav2.generator import ExLlamaV2BaseGenerator, ExLlamaV2Sampler
|
98 |
+
|
99 |
+
import time
|
100 |
+
|
101 |
+
# Initialize model and cache
|
102 |
+
|
103 |
+
model_directory = "/model_path/Mistral-7B-Instruct-v0.2-6.0-bpw-exl2/"
|
104 |
+
print("Loading model: " + model_directory)
|
105 |
+
|
106 |
+
config = ExLlamaV2Config(model_directory)
|
107 |
+
model = ExLlamaV2(config)
|
108 |
+
cache = ExLlamaV2Cache(model, lazy=True)
|
109 |
+
model.load_autosplit(cache)
|
110 |
+
tokenizer = ExLlamaV2Tokenizer(config)
|
111 |
+
|
112 |
+
# Initialize generator
|
113 |
+
|
114 |
+
generator = ExLlamaV2BaseGenerator(model, cache, tokenizer)
|
115 |
+
|
116 |
+
# Generate some text
|
117 |
+
|
118 |
+
settings = ExLlamaV2Sampler.Settings()
|
119 |
+
settings.temperature = 0.85
|
120 |
+
settings.top_k = 50
|
121 |
+
settings.top_p = 0.8
|
122 |
+
settings.token_repetition_penalty = 1.01
|
123 |
+
settings.disallow_tokens(tokenizer, [tokenizer.eos_token_id])
|
124 |
+
|
125 |
+
prompt = "Tell me a funny joke about Large Language Models meeting a Blackhole in an intergalactic Bar."
|
126 |
+
|
127 |
+
max_new_tokens = 512
|
128 |
+
|
129 |
+
generator.warmup()
|
130 |
+
time_begin = time.time()
|
131 |
+
|
132 |
+
output = generator.generate_simple(prompt, settings, max_new_tokens, seed=1234)
|
133 |
+
|
134 |
+
time_end = time.time()
|
135 |
+
time_total = time_end - time_begin
|
136 |
+
|
137 |
+
print(output)
|
138 |
+
print()
|
139 |
+
print(f"Response generated in {time_total:.2f} seconds")
|
140 |
+
|
141 |
+
|
142 |
+
```
|
143 |
+
|
144 |
+
# Original Model Card for Mistral-7B-Instruct-v0.2
|
145 |
|
146 |
The Mistral-7B-Instruct-v0.2 Large Language Model (LLM) is an instruct fine-tuned version of the Mistral-7B-v0.2.
|
147 |
|