File size: 13,867 Bytes
0166748
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
[hops] 2024-09-24 15:33:02.854 | INFO     | Initializing a parser from /workspace/configs/exp_camembertv2/camembertv2_base_p2_17k_last_layer.yaml
[hops] 2024-09-24 15:33:02.888 | INFO     | Generating a FastText model from the treebank
[hops] 2024-09-24 15:33:02.897 | INFO     | Training fasttext model
[hops] 2024-09-24 15:33:04.173 | WARNING  | Some weights of RobertaModel were not initialized from the model checkpoint at /scratch/camembertv2/runs/models/camembertv2-base-bf16/post/ckpt-p2-17000/pt/ and are newly initialized: ['roberta.pooler.dense.bias', 'roberta.pooler.dense.weight']
You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference.
[hops] 2024-09-24 15:33:09.889 | INFO     | Start training on cuda:0
[hops] 2024-09-24 15:33:09.892 | WARNING  | You're using a RobertaTokenizerFast tokenizer. Please note that with a fast tokenizer, using the `__call__` method is faster than using a method to encode the text followed by a call to the `pad` method to get a padded encoding.
[hops] 2024-09-24 15:33:21.621 | INFO     | Epoch 0: train loss 3.2439	dev loss 2.8669	dev tag acc 00.26%	dev head acc 23.97%	dev deprel acc 32.17%
[hops] 2024-09-24 15:33:21.625 | INFO     | New best model: head accuracy 23.97% > 0.00%
[hops] 2024-09-24 15:33:35.614 | INFO     | Epoch 1: train loss 2.5748	dev loss 2.1781	dev tag acc 00.55%	dev head acc 44.69%	dev deprel acc 64.55%
[hops] 2024-09-24 15:33:35.614 | INFO     | New best model: head accuracy 44.69% > 23.97%
[hops] 2024-09-24 15:33:49.487 | INFO     | Epoch 2: train loss 2.0676	dev loss 1.7605	dev tag acc 37.83%	dev head acc 53.20%	dev deprel acc 72.15%
[hops] 2024-09-24 15:33:49.488 | INFO     | New best model: head accuracy 53.20% > 44.69%
[hops] 2024-09-24 15:34:03.400 | INFO     | Epoch 3: train loss 1.6440	dev loss 1.3460	dev tag acc 59.15%	dev head acc 62.36%	dev deprel acc 76.75%
[hops] 2024-09-24 15:34:03.401 | INFO     | New best model: head accuracy 62.36% > 53.20%
[hops] 2024-09-24 15:34:17.979 | INFO     | Epoch 4: train loss 1.2439	dev loss 1.0561	dev tag acc 68.45%	dev head acc 69.04%	dev deprel acc 80.28%
[hops] 2024-09-24 15:34:17.980 | INFO     | New best model: head accuracy 69.04% > 62.36%
[hops] 2024-09-24 15:34:32.155 | INFO     | Epoch 5: train loss 0.9863	dev loss 0.8724	dev tag acc 72.19%	dev head acc 73.82%	dev deprel acc 83.38%
[hops] 2024-09-24 15:34:32.156 | INFO     | New best model: head accuracy 73.82% > 69.04%
[hops] 2024-09-24 15:34:46.008 | INFO     | Epoch 6: train loss 0.8104	dev loss 0.7492	dev tag acc 82.46%	dev head acc 76.78%	dev deprel acc 84.17%
[hops] 2024-09-24 15:34:46.009 | INFO     | New best model: head accuracy 76.78% > 73.82%
[hops] 2024-09-24 15:35:00.123 | INFO     | Epoch 7: train loss 0.6813	dev loss 0.6608	dev tag acc 86.37%	dev head acc 79.33%	dev deprel acc 85.77%
[hops] 2024-09-24 15:35:00.124 | INFO     | New best model: head accuracy 79.33% > 76.78%
[hops] 2024-09-24 15:35:14.106 | INFO     | Epoch 8: train loss 0.5863	dev loss 0.6169	dev tag acc 87.87%	dev head acc 79.97%	dev deprel acc 86.28%
[hops] 2024-09-24 15:35:14.107 | INFO     | New best model: head accuracy 79.97% > 79.33%
[hops] 2024-09-24 15:35:28.022 | INFO     | Epoch 9: train loss 0.5135	dev loss 0.6030	dev tag acc 89.73%	dev head acc 80.82%	dev deprel acc 87.10%
[hops] 2024-09-24 15:35:28.023 | INFO     | New best model: head accuracy 80.82% > 79.97%
[hops] 2024-09-24 15:35:41.556 | INFO     | Epoch 10: train loss 0.4537	dev loss 0.5871	dev tag acc 91.19%	dev head acc 82.06%	dev deprel acc 88.05%
[hops] 2024-09-24 15:35:41.557 | INFO     | New best model: head accuracy 82.06% > 80.82%
[hops] 2024-09-24 15:35:56.168 | INFO     | Epoch 11: train loss 0.4092	dev loss 0.5826	dev tag acc 91.57%	dev head acc 83.66%	dev deprel acc 88.62%
[hops] 2024-09-24 15:35:56.169 | INFO     | New best model: head accuracy 83.66% > 82.06%
[hops] 2024-09-24 15:36:10.303 | INFO     | Epoch 12: train loss 0.3746	dev loss 0.5677	dev tag acc 92.30%	dev head acc 83.92%	dev deprel acc 88.77%
[hops] 2024-09-24 15:36:10.304 | INFO     | New best model: head accuracy 83.92% > 83.66%
[hops] 2024-09-24 15:36:24.290 | INFO     | Epoch 13: train loss 0.3392	dev loss 0.5757	dev tag acc 92.46%	dev head acc 83.37%	dev deprel acc 89.09%
[hops] 2024-09-24 15:36:36.551 | INFO     | Epoch 14: train loss 0.3124	dev loss 0.5494	dev tag acc 92.84%	dev head acc 83.96%	dev deprel acc 89.71%
[hops] 2024-09-24 15:36:36.552 | INFO     | New best model: head accuracy 83.96% > 83.92%
[hops] 2024-09-24 15:36:50.657 | INFO     | Epoch 15: train loss 0.2848	dev loss 0.5712	dev tag acc 93.29%	dev head acc 84.60%	dev deprel acc 89.87%
[hops] 2024-09-24 15:36:50.658 | INFO     | New best model: head accuracy 84.60% > 83.96%
[hops] 2024-09-24 15:37:04.712 | INFO     | Epoch 16: train loss 0.2680	dev loss 0.5854	dev tag acc 93.47%	dev head acc 85.18%	dev deprel acc 90.01%
[hops] 2024-09-24 15:37:04.713 | INFO     | New best model: head accuracy 85.18% > 84.60%
[hops] 2024-09-24 15:37:18.922 | INFO     | Epoch 17: train loss 0.2485	dev loss 0.5999	dev tag acc 93.55%	dev head acc 84.95%	dev deprel acc 90.24%
[hops] 2024-09-24 15:37:30.981 | INFO     | Epoch 18: train loss 0.2326	dev loss 0.6017	dev tag acc 93.86%	dev head acc 85.64%	dev deprel acc 89.91%
[hops] 2024-09-24 15:37:30.982 | INFO     | New best model: head accuracy 85.64% > 85.18%
[hops] 2024-09-24 15:37:45.204 | INFO     | Epoch 19: train loss 0.2163	dev loss 0.6003	dev tag acc 93.93%	dev head acc 85.48%	dev deprel acc 90.38%
[hops] 2024-09-24 15:37:57.324 | INFO     | Epoch 20: train loss 0.2016	dev loss 0.6100	dev tag acc 94.17%	dev head acc 85.77%	dev deprel acc 90.26%
[hops] 2024-09-24 15:37:57.324 | INFO     | New best model: head accuracy 85.77% > 85.64%
[hops] 2024-09-24 15:38:11.713 | INFO     | Epoch 21: train loss 0.1925	dev loss 0.6233	dev tag acc 94.24%	dev head acc 85.53%	dev deprel acc 90.73%
[hops] 2024-09-24 15:38:23.640 | INFO     | Epoch 22: train loss 0.1829	dev loss 0.6013	dev tag acc 94.30%	dev head acc 85.94%	dev deprel acc 90.72%
[hops] 2024-09-24 15:38:23.641 | INFO     | New best model: head accuracy 85.94% > 85.77%
[hops] 2024-09-24 15:38:38.142 | INFO     | Epoch 23: train loss 0.1698	dev loss 0.6447	dev tag acc 94.43%	dev head acc 86.10%	dev deprel acc 90.83%
[hops] 2024-09-24 15:38:38.143 | INFO     | New best model: head accuracy 86.10% > 85.94%
[hops] 2024-09-24 15:38:51.582 | INFO     | Epoch 24: train loss 0.1593	dev loss 0.6905	dev tag acc 94.60%	dev head acc 85.94%	dev deprel acc 91.06%
[hops] 2024-09-24 15:39:03.061 | INFO     | Epoch 25: train loss 0.1530	dev loss 0.6778	dev tag acc 94.61%	dev head acc 85.93%	dev deprel acc 90.78%
[hops] 2024-09-24 15:39:14.938 | INFO     | Epoch 26: train loss 0.1431	dev loss 0.6909	dev tag acc 94.61%	dev head acc 86.17%	dev deprel acc 91.01%
[hops] 2024-09-24 15:39:14.939 | INFO     | New best model: head accuracy 86.17% > 86.10%
[hops] 2024-09-24 15:39:29.019 | INFO     | Epoch 27: train loss 0.1379	dev loss 0.7448	dev tag acc 94.57%	dev head acc 86.15%	dev deprel acc 90.87%
[hops] 2024-09-24 15:39:40.887 | INFO     | Epoch 28: train loss 0.1292	dev loss 0.7414	dev tag acc 94.66%	dev head acc 86.44%	dev deprel acc 91.14%
[hops] 2024-09-24 15:39:40.888 | INFO     | New best model: head accuracy 86.44% > 86.17%
[hops] 2024-09-24 15:39:55.098 | INFO     | Epoch 29: train loss 0.1242	dev loss 0.7502	dev tag acc 94.61%	dev head acc 86.45%	dev deprel acc 91.12%
[hops] 2024-09-24 15:39:55.099 | INFO     | New best model: head accuracy 86.45% > 86.44%
[hops] 2024-09-24 15:40:09.314 | INFO     | Epoch 30: train loss 0.1201	dev loss 0.7615	dev tag acc 94.66%	dev head acc 86.15%	dev deprel acc 91.13%
[hops] 2024-09-24 15:40:21.157 | INFO     | Epoch 31: train loss 0.1145	dev loss 0.7454	dev tag acc 94.88%	dev head acc 86.35%	dev deprel acc 91.13%
[hops] 2024-09-24 15:40:33.212 | INFO     | Epoch 32: train loss 0.1104	dev loss 0.7493	dev tag acc 94.80%	dev head acc 86.59%	dev deprel acc 91.18%
[hops] 2024-09-24 15:40:33.213 | INFO     | New best model: head accuracy 86.59% > 86.45%
[hops] 2024-09-24 15:40:46.985 | INFO     | Epoch 33: train loss 0.1045	dev loss 0.7510	dev tag acc 94.86%	dev head acc 86.49%	dev deprel acc 91.26%
[hops] 2024-09-24 15:40:58.689 | INFO     | Epoch 34: train loss 0.1013	dev loss 0.8365	dev tag acc 94.84%	dev head acc 86.13%	dev deprel acc 91.15%
[hops] 2024-09-24 15:41:10.761 | INFO     | Epoch 35: train loss 0.0963	dev loss 0.8366	dev tag acc 94.94%	dev head acc 86.39%	dev deprel acc 91.15%
[hops] 2024-09-24 15:41:22.642 | INFO     | Epoch 36: train loss 0.0921	dev loss 0.8437	dev tag acc 94.94%	dev head acc 85.95%	dev deprel acc 91.17%
[hops] 2024-09-24 15:41:34.395 | INFO     | Epoch 37: train loss 0.0900	dev loss 0.8631	dev tag acc 94.90%	dev head acc 86.14%	dev deprel acc 91.31%
[hops] 2024-09-24 15:41:46.080 | INFO     | Epoch 38: train loss 0.0857	dev loss 0.8898	dev tag acc 95.02%	dev head acc 86.29%	dev deprel acc 91.26%
[hops] 2024-09-24 15:41:58.024 | INFO     | Epoch 39: train loss 0.0836	dev loss 0.8344	dev tag acc 95.00%	dev head acc 86.53%	dev deprel acc 91.41%
[hops] 2024-09-24 15:42:10.046 | INFO     | Epoch 40: train loss 0.0808	dev loss 0.9104	dev tag acc 94.94%	dev head acc 86.55%	dev deprel acc 91.31%
[hops] 2024-09-24 15:42:22.012 | INFO     | Epoch 41: train loss 0.0767	dev loss 0.8839	dev tag acc 95.01%	dev head acc 86.53%	dev deprel acc 91.37%
[hops] 2024-09-24 15:42:33.859 | INFO     | Epoch 42: train loss 0.0740	dev loss 0.9266	dev tag acc 94.99%	dev head acc 86.36%	dev deprel acc 91.30%
[hops] 2024-09-24 15:42:45.857 | INFO     | Epoch 43: train loss 0.0708	dev loss 0.9715	dev tag acc 95.08%	dev head acc 86.20%	dev deprel acc 91.31%
[hops] 2024-09-24 15:42:57.382 | INFO     | Epoch 44: train loss 0.0700	dev loss 0.9246	dev tag acc 95.11%	dev head acc 86.53%	dev deprel acc 91.38%
[hops] 2024-09-24 15:43:09.412 | INFO     | Epoch 45: train loss 0.0665	dev loss 0.9343	dev tag acc 95.07%	dev head acc 86.45%	dev deprel acc 91.56%
[hops] 2024-09-24 15:43:21.084 | INFO     | Epoch 46: train loss 0.0655	dev loss 0.9534	dev tag acc 95.21%	dev head acc 86.46%	dev deprel acc 91.45%
[hops] 2024-09-24 15:43:33.081 | INFO     | Epoch 47: train loss 0.0645	dev loss 0.9809	dev tag acc 95.12%	dev head acc 86.47%	dev deprel acc 91.23%
[hops] 2024-09-24 15:43:45.664 | INFO     | Epoch 48: train loss 0.0612	dev loss 0.9552	dev tag acc 95.12%	dev head acc 86.59%	dev deprel acc 91.48%
[hops] 2024-09-24 15:43:58.409 | INFO     | Epoch 49: train loss 0.0588	dev loss 0.9978	dev tag acc 95.12%	dev head acc 86.55%	dev deprel acc 91.45%
[hops] 2024-09-24 15:44:10.971 | INFO     | Epoch 50: train loss 0.0588	dev loss 1.0168	dev tag acc 95.20%	dev head acc 86.90%	dev deprel acc 91.61%
[hops] 2024-09-24 15:44:10.972 | INFO     | New best model: head accuracy 86.90% > 86.59%
[hops] 2024-09-24 15:44:24.670 | INFO     | Epoch 51: train loss 0.0553	dev loss 1.0430	dev tag acc 95.14%	dev head acc 86.59%	dev deprel acc 91.41%
[hops] 2024-09-24 15:44:36.476 | INFO     | Epoch 52: train loss 0.0546	dev loss 0.9933	dev tag acc 95.21%	dev head acc 86.65%	dev deprel acc 91.47%
[hops] 2024-09-24 15:44:48.691 | INFO     | Epoch 53: train loss 0.0531	dev loss 1.0337	dev tag acc 95.18%	dev head acc 86.64%	dev deprel acc 91.53%
[hops] 2024-09-24 15:45:01.074 | INFO     | Epoch 54: train loss 0.0496	dev loss 1.0584	dev tag acc 95.12%	dev head acc 86.66%	dev deprel acc 91.50%
[hops] 2024-09-24 15:45:12.150 | INFO     | Epoch 55: train loss 0.0518	dev loss 1.0425	dev tag acc 95.21%	dev head acc 86.74%	dev deprel acc 91.54%
[hops] 2024-09-24 15:45:23.844 | INFO     | Epoch 56: train loss 0.0506	dev loss 1.0478	dev tag acc 95.16%	dev head acc 86.64%	dev deprel acc 91.55%
[hops] 2024-09-24 15:45:35.747 | INFO     | Epoch 57: train loss 0.0479	dev loss 1.0688	dev tag acc 95.18%	dev head acc 86.69%	dev deprel acc 91.44%
[hops] 2024-09-24 15:45:47.637 | INFO     | Epoch 58: train loss 0.0484	dev loss 1.0632	dev tag acc 95.21%	dev head acc 86.74%	dev deprel acc 91.50%
[hops] 2024-09-24 15:45:59.297 | INFO     | Epoch 59: train loss 0.0460	dev loss 1.0741	dev tag acc 95.21%	dev head acc 86.74%	dev deprel acc 91.61%
[hops] 2024-09-24 15:46:11.546 | INFO     | Epoch 60: train loss 0.0462	dev loss 1.0848	dev tag acc 95.18%	dev head acc 86.79%	dev deprel acc 91.61%
[hops] 2024-09-24 15:46:23.613 | INFO     | Epoch 61: train loss 0.0466	dev loss 1.0859	dev tag acc 95.21%	dev head acc 86.83%	dev deprel acc 91.56%
[hops] 2024-09-24 15:46:35.434 | INFO     | Epoch 62: train loss 0.0440	dev loss 1.0883	dev tag acc 95.23%	dev head acc 86.74%	dev deprel acc 91.55%
[hops] 2024-09-24 15:46:47.207 | INFO     | Epoch 63: train loss 0.0452	dev loss 1.0858	dev tag acc 95.25%	dev head acc 86.70%	dev deprel acc 91.57%
[hops] 2024-09-24 15:46:52.244 | WARNING  | You're using a RobertaTokenizerFast tokenizer. Please note that with a fast tokenizer, using the `__call__` method is faster than using a method to encode the text followed by a call to the `pad` method to get a padded encoding.
[hops] 2024-09-24 15:46:59.091 | WARNING  | You're using a RobertaTokenizerFast tokenizer. Please note that with a fast tokenizer, using the `__call__` method is faster than using a method to encode the text followed by a call to the `pad` method to get a padded encoding.
[hops] 2024-09-24 15:47:01.944 | INFO     | Metrics for FSMB-camembertv2_base_p2_17k_last_layer+rand_seed=25
 ─────────────────────────────── 
  Split   UPOS     UAS     LAS   
 ─────────────────────────────── 
  Dev     95.10   87.05   81.42  
  Test    95.18   87.05   81.88  
 ───────────────────────────────