allknowingroger's picture
Update README.md
040ae9b verified
metadata
tags:
  - merge
  - mergekit
  - lazymergekit
  - allknowingroger/limyClown-7B-slerp
  - allknowingroger/limyClown-7B-slerp
  - allknowingroger/limyClown-7B-slerp
  - allknowingroger/limyClown-7B-slerp
  - allknowingroger/limyClown-7B-slerp
base_model:
  - allknowingroger/limyClown-7B-slerp
  - allknowingroger/limyClown-7B-slerp
  - allknowingroger/limyClown-7B-slerp
  - allknowingroger/limyClown-7B-slerp
  - allknowingroger/limyClown-7B-slerp
license: apache-2.0

FrankenRoger-7B-passthrough

FrankenRoger-7B-passthrough is a merge of the following models using LazyMergekit:

🧩 Configuration

dtype: float16
merge_method: passthrough
slices:
  - sources:
    - model: allknowingroger/limyClown-7B-slerp
      layer_range: [0,9]
  - sources:
    - model: allknowingroger/limyClown-7B-slerp
      layer_range: [5,14]
  - sources:
    - model: allknowingroger/limyClown-7B-slerp
      layer_range: [10,19]
  - sources:
    - model: allknowingroger/limyClown-7B-slerp
      layer_range: [15,24]
  - sources:
    - model: allknowingroger/limyClown-7B-slerp
      layer_range: [20,32]

💻 Usage

!pip install -qU transformers accelerate

from transformers import AutoTokenizer
import transformers
import torch

model = "allknowingroger/FrankenRoger-7B-passthrough"
messages = [{"role": "user", "content": "What is a large language model?"}]

tokenizer = AutoTokenizer.from_pretrained(model)
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
pipeline = transformers.pipeline(
    "text-generation",
    model=model,
    torch_dtype=torch.float16,
    device_map="auto",
)

outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])