File size: 106,614 Bytes
f0b49b0 3f4d90d f0b49b0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 |
import logging
import math
from copy import deepcopy
from dataclasses import fields, dataclass, replace
from enum import Enum
from typing import List, Optional, Tuple, Union, Dict, Any, Sequence, Callable, cast, MutableMapping
import torch
from einops import einsum, einops
from transformers import PreTrainedModel, GenerationConfig
from transformers.cache_utils import Cache
from transformers.modeling_outputs import CausalLMOutputWithPast, ModelOutput
from transformers.models.auto import AutoModelForCausalLM
from torch import nn
from .config_molmo import MolmoConfig
from torch.nn import functional as F
log = logging.getLogger(__name__)
class BufferCache(dict, MutableMapping[str, torch.Tensor]):
"""
Cache for attention biases and other things that would normally be stored as buffers.
We avoid using buffers because we've run into various issues doing so with FSDP.
In general it appears the way FSDP handles buffers is not well-defined.
It doesn't shard them but apparently it does synchronize them across processes, which we want to avoid
since (A) it isn't necessary, and (B) we sometimes have `-inf` in these biases which might get turned into
NaNs when they're synchronized due to casting or some other issue.
"""
class StrEnum(str, Enum):
def __str__(self) -> str:
return self.value
def __repr__(self) -> str:
return f"'{str(self)}'"
class ImageProjectType(StrEnum):
mlp = "mlp"
mlpx2 = "2mlp"
linear = "linear"
class ImagePooling2DType(StrEnum):
attention = "attention"
attention_meanq = "attention-meanq"
attention_2wide = "attention_2wide"
attention_v2 = "attention-v2"
none = "none"
stack = "stack"
class ActivationType(StrEnum):
quick_gelu = "quick_gelu"
gelu = "gelu"
gelu_tanh = "gelu_tanh"
relu = "relu"
silu = "silu"
llama_geglu = "llama_geglu"
llama_geglu_tanh = "llama_geglu_tanh"
llama_swiglu = "llama_swiglu"
swiglu = "swiglu"
def ensure_finite_(x: torch.Tensor, check_neg_inf: bool = True, check_pos_inf: bool = False):
"""
Modify ``x`` in place to replace ``float("-inf")`` with the minimum value of the dtype when ``check_neg_inf``
is ``True`` and to replace ``float("inf")`` with the maximum value of the dtype when ``check_pos_inf`` is ``True``.
"""
if check_neg_inf:
x.masked_fill_(x == float("-inf"), torch.finfo(x.dtype).min)
if check_pos_inf:
x.masked_fill_(x == float("inf"), torch.finfo(x.dtype).max)
class OLMoConfigurationError(Exception):
pass
def _non_meta_init_device(config) -> torch.device:
if config.init_device is not None and config.init_device != "meta":
return torch.device(config.init_device)
else:
return torch.device("cuda" if torch.cuda.is_available() else "cpu")
class RotaryEmbedding(nn.Module):
"""
[Rotary positional embeddings (RoPE)](https://arxiv.org/abs/2104.09864).
"""
def __init__(self, config: MolmoConfig, cache: BufferCache):
super().__init__()
self.config = config
self.__cache = cache
# Warm up cache.
self.get_rotary_embedding(
config.max_position_embeddings or config.max_sequence_length,
_non_meta_init_device(config)
)
def get_rotary_embedding(self, seq_len: int, device: torch.device) -> Tuple[torch.Tensor, torch.Tensor]:
if (
(pos_sin := self.__cache.get("rope_pos_sin")) is not None
and (pos_cos := self.__cache.get("rope_pos_cos")) is not None
and pos_sin.shape[-2] >= seq_len
and pos_cos.shape[-2] >= seq_len
):
if pos_sin.device != device:
pos_sin = pos_sin.to(device)
self.__cache["rope_pos_sin"] = pos_sin
if pos_cos.device != device:
pos_cos = pos_cos.to(device)
self.__cache["rope_pos_cos"] = pos_cos
return pos_sin[:, :, :seq_len, :], pos_cos[:, :, :seq_len, :]
with torch.autocast(device.type, enabled=False):
dim = self.config.d_model // self.config.n_heads
inv_freq = 1.0 / (self.config.rope_theta ** (torch.arange(0, dim, 2, device=device, dtype=torch.float) / dim))
seq = torch.arange(seq_len, device=device, dtype=torch.float)
freqs = torch.einsum("i , j -> i j", seq, inv_freq)
if self.config.rope_impl == "cockatoo":
positions = freqs.repeat_interleave(2, dim=-1)
else:
positions = torch.cat((freqs, freqs), dim=-1)
pos_sin, pos_cos = positions.sin()[None, None, :, :], positions.cos()[None, None, :, :]
self.__cache["rope_pos_sin"] = pos_sin
self.__cache["rope_pos_cos"] = pos_cos
return pos_sin, pos_cos
def rotate_half(self, x: torch.Tensor) -> torch.Tensor:
B, nh, T, hs = x.size()
x = x.view(B, nh, T, 2, hs // 2)
x1, x2 = x.unbind(dim=-2)
return torch.cat((-x2, x1), dim=-1)
def rotate_every_two(self, x: torch.Tensor) -> torch.Tensor:
B, nh, T, hs = x.size()
x = x.view(B, nh, T, hs // 2, 2)
x1, x2 = x.unbind(dim=-1)
x = torch.stack((-x2, x1), dim=-1)
return x.view(B, nh, T, hs)
def apply_rotary_pos_emb(self, pos_sin: torch.Tensor, pos_cos: torch.Tensor, t: torch.Tensor) -> torch.Tensor:
if self.config.rope_impl == "cockatoo":
return ((t * pos_cos) + (self.rotate_every_two(t) * pos_sin)).to(t.dtype)
else:
return ((t * pos_cos) + (self.rotate_half(t) * pos_sin)).to(t.dtype)
def forward(
self,
q: torch.Tensor,
k: torch.Tensor,
position_ids: Optional[torch.Tensor] = None
) -> Tuple[torch.Tensor, torch.Tensor]:
if self.config.rope_full_precision:
q_, k_ = q.float(), k.float()
else:
q_, k_ = q, k
with torch.autocast(q.device.type, enabled=False):
batch_size = q_.shape[0]
query_len, key_len = q_.shape[-2], k_.shape[-2] # could be different if layer_past not None
if position_ids is not None:
freqs_cis_len = (self.config.max_position_embeddings or self.config.max_sequence_length)
else:
freqs_cis_len = key_len
pos_sin, pos_cos = self.get_rotary_embedding(freqs_cis_len, q_.device)
pos_sin = pos_sin.type_as(q_)
pos_cos = pos_cos.type_as(q_)
if position_ids is not None:
assert query_len == key_len, "Query and key lengths must be equal when using position IDs."
pos_sin = pos_sin[0, 0][position_ids].view(
(batch_size, 1, key_len, pos_sin.shape[-1])
)
pos_cos = pos_cos[0, 0][position_ids].view(
(batch_size, 1, key_len, pos_cos.shape[-1])
)
q_ = self.apply_rotary_pos_emb(
pos_sin[:, :, key_len - query_len : key_len, :],
pos_cos[:, :, key_len - query_len : key_len, :],
q_,
)
k_ = self.apply_rotary_pos_emb(pos_sin, pos_cos, k_)
return q_.type_as(q), k_.type_as(k)
class OLMoBlock(nn.Module):
"""
A base class for transformer block implementations.
"""
def __init__(self, layer_id: int, config: MolmoConfig, cache: BufferCache):
super().__init__()
self.layer_id = layer_id
self.config = config
self.hidden_size = (
config.mlp_hidden_size if config.mlp_hidden_size is not None else config.mlp_ratio * config.d_model
)
self.__cache = cache
self._activation_checkpoint_fn = None
# Dropout.
self.dropout = Dropout(config.residual_dropout, mask_p=config.response_residual_dropout)
# Layer norms.
self.k_norm: Optional[LayerNormBase] = None
self.q_norm: Optional[LayerNormBase] = None
if config.attention_layer_norm:
assert config.effective_n_kv_heads is not None
self.k_norm = LayerNormBase.build(
config,
size=(config.d_model // config.n_heads) * config.effective_n_kv_heads,
elementwise_affine=config.attention_layer_norm_with_affine,
)
self.q_norm = LayerNormBase.build(config, elementwise_affine=config.attention_layer_norm_with_affine)
# Make sure QKV clip coefficient is positive, otherwise it's not well-defined.
if config.clip_qkv is not None:
assert config.clip_qkv > 0
# Activation function.
self.act = Activation.build(config)
assert (self.act.output_multiplier * self.hidden_size) % 1 == 0
# Attention output projection.
input_dim = config.d_model
self.attn_out = nn.Linear(
input_dim, config.d_model,
bias=config.include_bias,
device=config.init_device
)
# Feed-forward output projection.
self.ff_out = nn.Linear(
int(self.act.output_multiplier * self.hidden_size),
config.d_model,
bias=config.include_bias,
device=config.init_device,
)
self.ff_out._is_residual = True # type: ignore
# Rotary embeddings.
if self.config.rope:
self.rotary_emb = RotaryEmbedding(config, self.__cache)
self.flash_attn_func = None
if config.attention_type == "flash":
try:
from flash_attn import flash_attn_func # type: ignore
self.flash_attn_func = flash_attn_func
except ModuleNotFoundError:
pass
def reset_parameters(self):
if self.k_norm is not None:
self.k_norm.reset_parameters()
if self.q_norm is not None:
self.q_norm.reset_parameters()
init_weights(
self.config,
self.attn_out,
d=self.config.d_model,
layer_id=self.layer_id,
type_of_module=ModuleType.out_module,
)
init_weights(
self.config,
self.ff_out,
d=self.ff_out.in_features,
layer_id=self.layer_id,
type_of_module=ModuleType.out_module,
)
@classmethod
def _cast_attn_bias(cls, bias: torch.Tensor, input_dtype: torch.dtype) -> torch.Tensor:
target_dtype = input_dtype
# NOTE: `is_autocast_enabled()` only checks for CUDA autocast, so we use the separate function
# `is_autocast_cpu_enabled()` for CPU autocast.
# See https://github.com/pytorch/pytorch/issues/110966.
if bias.device.type == "cuda" and torch.is_autocast_enabled():
target_dtype = torch.get_autocast_gpu_dtype()
elif bias.device.type == "cpu" and torch.is_autocast_cpu_enabled():
target_dtype = torch.get_autocast_cpu_dtype()
if bias.dtype != target_dtype:
bias = bias.to(target_dtype)
ensure_finite_(bias, check_neg_inf=True, check_pos_inf=False)
return bias
def _scaled_dot_product_attention(
self,
q: torch.Tensor,
k: torch.Tensor,
v: torch.Tensor,
attn_mask: Optional[torch.Tensor] = None,
drop_mask: Optional[torch.Tensor] = None,
dropout_p: float = 0.0,
response_dropout_p: float = 0.0,
is_causal: bool = False,
) -> torch.Tensor:
"""
Computes scaled dot product attention on query, key and value tensors, using an optional
attention mask if passed, and applying dropout if a probability greater than 0.0 is specified.
"""
if attn_mask is not None:
attn_mask = attn_mask.to(q.device)
if self.flash_attn_func is not None and attn_mask is None:
r = self.flash_attn_func(
q.transpose(1, 2), k.transpose(1, 2), v.transpose(1, 2), dropout_p=dropout_p, causal=is_causal
)
return r.transpose(1, 2)
else:
# torch's sdpa doesn't support GQA, so we're doing this
assert k.size(1) == v.size(1)
num_kv_heads = k.size(1)
num_q_heads = q.size(1)
if num_q_heads != num_kv_heads:
assert num_q_heads % num_kv_heads == 0
k = k.repeat_interleave(num_q_heads // num_kv_heads, dim=1, output_size=num_q_heads)
v = v.repeat_interleave(num_q_heads // num_kv_heads, dim=1, output_size=num_q_heads)
return F.scaled_dot_product_attention(
q,
k,
v,
attn_mask=attn_mask,
dropout_p=dropout_p,
is_causal=is_causal,
)
def attention(
self,
q: torch.Tensor,
k: torch.Tensor,
v: torch.Tensor,
attention_bias: Optional[torch.Tensor] = None,
position_ids: Optional[torch.Tensor] = None,
drop_mask: Optional[torch.Tensor] = None,
layer_past: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
use_cache: bool = False,
) -> Tuple[torch.Tensor, Optional[Tuple[torch.Tensor, torch.Tensor]]]:
B, T, C = q.size() # batch size, sequence length, d_model
dtype = k.dtype
# Optionally apply layer norm to keys and queries.
if self.q_norm is not None and self.k_norm is not None:
q = self.q_norm(q).to(dtype=dtype)
k = self.k_norm(k).to(dtype=dtype)
# Move head forward to be next to the batch dim.
# shape: (B, nh, T, hs)
q = q.view(B, T, self.config.n_heads, C // self.config.n_heads).transpose(1, 2)
# shape: (B, n_kv_h, T, hs)
k = k.view(B, T, self.config.effective_n_kv_heads, C // self.config.n_heads).transpose(1, 2)
# shape: (B, n_kv_h, T, hs)
v = v.view(B, T, self.config.effective_n_kv_heads, C // self.config.n_heads).transpose(1, 2)
if self.config.use_position_ids and self.config.rope:
# Apply rotary embeddings
q, k = self.rotary_emb(q, k, position_ids=position_ids)
if layer_past is not None:
past_key, past_value = layer_past
k = torch.cat((past_key.to(k.device), k), dim=-2)
v = torch.cat((past_value.to(v.device), v), dim=-2)
present = (k, v) if use_cache else None
query_len, key_len = q.shape[-2], k.shape[-2] # could be different if layer_past not None
if not self.config.use_position_ids and self.config.rope:
# Apply rotary embeddings
q, k = self.rotary_emb(q, k)
if attention_bias is not None:
# Resize and cast attention bias.
# The current dtype of the attention bias might not match the dtype that the SDP attn function will
# run in if AMP is enabled, and this can be a problem if some tokens are masked out due to padding
# as down-casting the attention bias to the autocast precision will result in -infs, which will
# cause the SDP attn function to produce NaNs.
attention_bias = self._cast_attn_bias(
attention_bias[:, :, key_len - query_len : key_len, :key_len], dtype
)
# Get the attention scores.
# shape: (B, nh, T, hs)
att = self._scaled_dot_product_attention(
q,
k,
v,
attn_mask=attention_bias,
drop_mask=drop_mask,
dropout_p=0.0 if not self.training else self.config.attention_dropout,
response_dropout_p=0.0 if not self.training else self.config.response_attention_dropout,
is_causal=attention_bias is None,
)
# Re-assemble all head outputs side-by-side.
att = att.transpose(1, 2).contiguous().view(B, T, C)
# Apply output projection.
return self.attn_out(att), present
def forward(
self,
x: torch.Tensor,
attention_bias: Optional[torch.FloatTensor] = None,
position_ids: Optional[torch.Tensor] = None,
drop_mask: Optional[torch.Tensor] = None,
layer_past: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
use_cache: bool = False,
) -> Tuple[torch.Tensor, Optional[Tuple[torch.Tensor, torch.Tensor]]]:
raise NotImplementedError
@classmethod
def build(cls, layer_id: int, config: MolmoConfig, cache: BufferCache):
if config.block_type == "sequential":
return OLMoSequentialBlock(layer_id, config, cache)
elif config.block_type == "llama":
return OLMoLlamaBlock(layer_id, config, cache)
else:
raise NotImplementedError(f"Unknown block type: '{config.block_type}'")
class OLMoLlamaBlock(OLMoBlock):
"""
This is a transformer block where the output is computed as ``MLP(LN(x + Attention(LN(x))))``
(plus another skip connection). This block is similar to `OLMoSequentialBlock`
but some operations have slightly different implementations to imitate the
behavior of Llama.
"""
def __init__(self, layer_id: int, config: MolmoConfig, cache: BufferCache):
super().__init__(layer_id, config, cache)
# Layer norms.
self.attn_norm = LayerNorm.build(config)
self.ff_norm = LayerNorm.build(config)
self.__cache = cache
# Attention input projection. Projects x -> (q, k, v)
q_proj_out_dim = config.d_model
k_proj_out_dim = config.effective_n_kv_heads * (config.d_model // config.n_heads)
v_proj_out_dim = config.effective_n_kv_heads * (config.d_model // config.n_heads)
self.q_proj = nn.Linear(
config.d_model, q_proj_out_dim, bias=config.qkv_bias, device=config.init_device
)
self.k_proj = nn.Linear(
config.d_model, k_proj_out_dim, bias=config.qkv_bias, device=config.init_device
)
self.v_proj = nn.Linear(
config.d_model, v_proj_out_dim, bias=config.qkv_bias, device=config.init_device
)
# Feed-forward input projection.
self.ff_proj1 = nn.Linear(
config.d_model, self.hidden_size // 2, bias=False, device=config.init_device
)
self.ff_proj2 = nn.Linear(
config.d_model, self.hidden_size // 2, bias=False, device=config.init_device
)
if self.config.norm_after:
raise NotImplementedError()
def reset_parameters(self):
super().reset_parameters()
self.attn_norm.reset_parameters()
self.ff_norm.reset_parameters()
# NOTE: the standard deviation for these weights does not depend on the layer.
init_weights(self.config, self.q_proj, d=self.config.d_model, layer_id=None)
init_weights(self.config, self.k_proj, d=self.config.d_model, layer_id=None)
init_weights(self.config, self.v_proj, d=self.config.d_model, layer_id=None)
init_weights(self.config, self.ff_proj1, d=self.config.d_model, layer_id=None)
init_weights(self.config, self.ff_proj2, d=self.config.d_model, layer_id=None)
def _scaled_dot_product_attention(
self,
q: torch.Tensor,
k: torch.Tensor,
v: torch.Tensor,
attn_mask: Optional[torch.Tensor] = None,
drop_mask: Optional[torch.Tensor] = None,
dropout_p: float = 0.0,
response_dropout_p: float = 0.0,
is_causal: bool = False,
) -> torch.Tensor:
# For GQA
assert k.size(1) == v.size(1)
num_kv_heads = k.size(1)
num_q_heads = q.size(1)
if num_q_heads != num_kv_heads:
assert num_q_heads % num_kv_heads == 0
k = k.repeat_interleave(num_q_heads // num_kv_heads, dim=1, output_size=num_q_heads)
v = v.repeat_interleave(num_q_heads // num_kv_heads, dim=1, output_size=num_q_heads)
og_dtype = q.dtype
k = k.to(q.device)
v = v.to(q.device)
if attn_mask is not None:
attn_mask = attn_mask.to(q.device)
assert response_dropout_p == 0.0, "Response dropout is not supported in Llama."
if self.config.float32_attention:
q, k = q.to(torch.float), k.to(torch.float)
if self.config.attention_type == "direct":
attn_weights = torch.matmul(q, k.transpose(-2, -1)) / (q.shape[-1] ** 0.5)
if is_causal:
assert attn_mask is None
query_len, key_len = q.shape[-2], k.shape[-2] # could be different if layer_past not None
attn_bias = get_causal_attention_bias(self.__cache, key_len, q.device)[:, :, :query_len, :key_len]
elif attn_mask is not None:
attn_bias = attn_mask
else:
attn_bias = torch.zeros_like(attn_weights)
attn_weights += attn_bias
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(q.dtype)
attn_weights = nn.functional.dropout(attn_weights, p=dropout_p, training=self.training).to(v.dtype)
att = torch.matmul(attn_weights, v)
elif self.config.attention_type == "sdpa":
att = F.scaled_dot_product_attention(
q,
k,
v,
attn_mask=attn_mask,
dropout_p=dropout_p,
is_causal=is_causal,
)
else:
raise NotImplementedError(self.config.attention_type)
att = att.to(og_dtype)
return att
def forward(
self,
x: torch.Tensor,
attention_bias: Optional[torch.Tensor] = None,
position_ids: Optional[torch.Tensor] = None,
drop_mask: Optional[torch.Tensor] = None,
layer_past: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
use_cache: bool = False,
) -> Tuple[torch.Tensor, Optional[Tuple[torch.Tensor, torch.Tensor]]]:
# Get query, key, value projections.
# shape:
# - for regular attn q, k, v: (batch_size, seq_len, d_model)
# - for multi-query attn q: (batch_size, seq_len, d_model)
# k, v: (batch_size, seq_len, d_model // n_heads)
x_normed = self.attn_norm(x)
q = self.q_proj(x_normed)
k = self.k_proj(x_normed)
v = self.v_proj(x_normed)
if self.config.clip_qkv is not None:
q.clamp_(min=-self.config.clip_qkv, max=self.config.clip_qkv)
k.clamp_(min=-self.config.clip_qkv, max=self.config.clip_qkv)
v.clamp_(min=-self.config.clip_qkv, max=self.config.clip_qkv)
# Get attention scores.
if self._activation_checkpoint_fn is not None:
att, cache = self._activation_checkpoint_fn( # type: ignore
self.attention, q, k, v, attention_bias, position_ids=position_ids, drop_mask=drop_mask, layer_past=layer_past, use_cache=use_cache
)
else:
att, cache = self.attention(q, k, v, attention_bias, position_ids=position_ids, drop_mask=drop_mask, layer_past=layer_past, use_cache=use_cache)
# Add attention scores.
# shape: (B, T, C)
x = x + self.dropout(att, drop_mask=drop_mask)
# Add feed-forward projection.
# shape: (batch_size, seq_len, d_model)
og_x = x
if self._activation_checkpoint_fn is not None:
x = self._activation_checkpoint_fn(self.ff_norm, x) # type: ignore
else:
x = self.ff_norm(x)
x1 = self.ff_proj1(x)
x2 = self.ff_proj2(x)
if self._activation_checkpoint_fn is not None:
x = self._activation_checkpoint_fn(self.act, x1, x2) # type: ignore
else:
x = self.act(x1, x2)
x = self.ff_out(x)
x = self.dropout(x, drop_mask=drop_mask)
x = og_x + x
return x, cache
class OLMoSequentialBlock(OLMoBlock):
"""
This is a typical transformer block where the output is computed as ``MLP(LN(x + Attention(LN(x))))``
(plus another skip connection).
"""
def __init__(self, layer_id: int, config: MolmoConfig, cache: BufferCache):
super().__init__(layer_id, config, cache)
# Layer norms.
self.attn_norm = LayerNorm.build(config)
self.ff_norm = LayerNorm.build(config)
# Attention input projection. Projects x -> (q, k, v)
head_dim = config.d_model // config.n_heads
self.fused_dims = (
config.d_model,
config.effective_n_kv_heads * head_dim,
config.effective_n_kv_heads * head_dim,
)
self.att_proj = nn.Linear(
config.d_model, sum(self.fused_dims),
bias=config.include_bias or config.qkv_bias,
device=config.init_device
)
# Feed-forward input projection.
self.ff_proj = nn.Linear(
config.d_model, self.hidden_size, bias=config.include_bias, device=config.init_device
)
def reset_parameters(self):
super().reset_parameters()
self.attn_norm.reset_parameters()
self.ff_norm.reset_parameters()
# NOTE: the standard deviation for these weights does not depend on the layer.
init_weights(
self.config, self.att_proj, d=self.config.d_model, layer_id=None, type_of_module=ModuleType.in_module
)
init_weights(
self.config, self.ff_proj, d=self.config.d_model, layer_id=None, type_of_module=ModuleType.in_module
)
def forward(
self,
x: torch.Tensor,
attention_bias: Optional[torch.Tensor] = None,
position_ids: Optional[torch.Tensor] = None,
drop_mask: Optional[torch.Tensor] = None,
layer_past: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
use_cache: bool = False,
) -> Tuple[torch.Tensor, Optional[Tuple[torch.Tensor, torch.Tensor]]]:
# Get query, key, value projections.
# shape:
# - for regular attn q, k, v: (batch_size, seq_len, d_model)
# - for multi-query attn q: (batch_size, seq_len, d_model)
# k, v: (batch_size, seq_len, d_model // n_heads)
# - for group query attn q: (batch_size, seq_len, d_model)
# k, v: (batch_size, seq_len, d_model // n_kv_heads)
if not self.config.norm_after:
if self._activation_checkpoint_fn is not None:
atten_in = self._activation_checkpoint_fn(self.attn_norm, x)
else:
atten_in = self.attn_norm(x)
else:
atten_in = x
qkv = self.att_proj(atten_in)
if self.config.clip_qkv is not None:
qkv.clamp_(min=-self.config.clip_qkv, max=self.config.clip_qkv)
q, k, v = qkv.split(self.fused_dims, dim=-1)
# Get attention scores.
if self._activation_checkpoint_fn is not None:
att, cache = self._activation_checkpoint_fn( # type: ignore
self.attention, q, k, v, attention_bias, position_ids=position_ids, drop_mask=drop_mask, layer_past=layer_past, use_cache=use_cache
)
else:
att, cache = self.attention(q, k, v, attention_bias, position_ids=position_ids, drop_mask=drop_mask, layer_past=layer_past, use_cache=use_cache)
if self.config.norm_after:
if self._activation_checkpoint_fn is not None:
att = self._activation_checkpoint_fn(self.attn_norm, att)
else:
att = self.attn_norm(att)
# Add attention scores.
# shape: (B, T, C)
x = x + self.dropout(att, drop_mask=drop_mask)
# Add feed-forward projection.
# shape: (batch_size, seq_len, d_model)
og_x = x
if not self.config.norm_after:
if self._activation_checkpoint_fn is not None:
x = self._activation_checkpoint_fn(self.ff_norm, x) # type: ignore
else:
x = self.ff_norm(x)
x = self.ff_proj(x)
if self._activation_checkpoint_fn is not None:
x = self._activation_checkpoint_fn(self.act, x) # type: ignore
else:
x = self.act(x)
x = self.ff_out(x)
if self.config.norm_after:
if self._activation_checkpoint_fn is not None:
x = self._activation_checkpoint_fn(self.ff_norm, x) # type: ignore
else:
x = self.ff_norm(x)
x = self.dropout(x, drop_mask=drop_mask)
x = og_x + x
return x, cache
class Embedding(nn.Module):
def __init__(
self,
num_embeddings: int,
num_new_embeddings: int,
features: int,
device: Union[str, torch.device],
initializer_range: float = 0.02,
new_embed_initializer_range: float = 0.02,
):
super().__init__()
self.initializer_range = initializer_range
self.new_embed_initializer_range = new_embed_initializer_range
self.embedding = nn.Parameter(
torch.zeros(num_embeddings, features, device=device),
)
self.new_embedding = nn.Parameter(
torch.zeros(num_new_embeddings, features, device=device),
)
def reset_parameters(self):
nn.init.normal_(self.embedding, std=self.initializer_range)
nn.init.normal_(self.new_embedding, std=self.new_embed_initializer_range)
def forward(self, x: torch.Tensor) -> torch.Tensor:
return F.embedding(x, torch.cat([self.embedding, self.new_embedding], dim=0))
class Dropout(nn.Dropout):
def __init__(
self,
p: float = 0.5,
inplace: bool = False,
mask_p: float = 0,
broadcast_dims: Sequence[int] = (),
):
super().__init__(p, inplace)
self.mask_p = mask_p
self.broadcast_dims = broadcast_dims
def forward(self, input: torch.Tensor, drop_mask: Optional[torch.Tensor] = None) -> torch.Tensor:
"""
:param input: A tensor of shape `(batch_size, seq_len, embed_dim)`
:param drop_mask: A tensor of shape `(batch_size, seq_len)` with values of zero or one.
"""
if self.p == 0.0 and (self.mask_p is None or self.mask_p == 0.0):
return input
else:
if self.mask_p > 0. and self.training:
assert drop_mask is not None
drop_mask = drop_mask.to(input.dtype)
keep_prob = 1.0 - self.p
keep_prob2 = 1.0 - self.mask_p
keep_prob = drop_mask * keep_prob2 + (1 - drop_mask) * keep_prob
keep_prob = keep_prob.unsqueeze(-1)
dropout_shape = list(input.shape)
keep_prob = keep_prob.broadcast_to(dropout_shape)
multiplier = input.new_empty(dropout_shape).bernoulli_(keep_prob)
multiplier.div_(keep_prob)
return input * multiplier
elif self.p > 0. and len(self.broadcast_dims) > 0 and self.training:
keep_prob = 1.0 - self.p
dropout_shape = list(input.shape)
for dim in self.broadcast_dims:
dropout_shape[dim] = 1
keep = input.new_empty(dropout_shape).bernoulli_(keep_prob)
multiplier = keep.broadcast_to(input.shape)
multiplier.div_(keep_prob)
input = input * multiplier
else:
return F.dropout(input, self.p, self.training, self.inplace)
@dataclass
class VisionBackboneConfig:
image_model_type: str = "openai"
image_default_input_size: Tuple[int, int] = (336, 336)
image_patch_size: int = 14
image_pos_patch_size: int = 14
image_emb_dim: int = 1024
image_num_heads: int = 16
image_num_key_value_heads: int = 16
image_num_layers: int = 24
image_head_dim: int = 64
image_mlp_dim: int = 4096
image_mlp_activations: str = "gelu"
image_dropout_rate: float = 0.0
image_num_pos: int = 577
image_norm_eps: float = 1e-5
attention_dropout: float = 0.0
residual_dropout: float = 0.0
initializer_range: float = 0.02
fsdp_wrap: bool = False
resize_mode: str = "default"
def __post_init__(self):
self.image_default_input_size = tuple(self.image_default_input_size) # type: ignore[assignment]
@property
def image_num_patch(self):
h, w = self.image_default_input_size
return h // self.image_patch_size, w // self.image_patch_size
@dataclass
class FullMolmoConfig:
d_model: int = 768
n_heads: int = 12
head_dim: int = 64
n_kv_heads: Optional[int] = None
qkv_bias: bool = False
clip_qkv: Optional[float] = None
n_layers: int = 12
mlp_ratio: int = 4
mlp_hidden_size: Optional[int] = None
activation_type: str = "swiglu"
block_type: str = "sequential"
block_group_size: int = 1
alibi: bool = False
alibi_bias_max: float = 8.0
rope: bool = False
rope_full_precision: bool = True
rope_theta: float = 10000.
rope_impl: str = "cockatoo"
vision_backbone: Optional[VisionBackboneConfig] = None
vit_load_path: Optional[str] = None
llm_load_path: Optional[str] = None
attention_type: str = "sdpa"
float32_attention: bool = True
attention_dropout: float = 0.1
response_attention_dropout: float = 0.0
multi_query_attention: Optional[bool] = None
attention_layer_norm: bool = False
residual_dropout: float = 0.1
response_residual_dropout: float = 0.0
embedding_dropout: float = 0.1
layer_norm_type: str = "default"
layer_norm_with_affine: bool = True
layer_norm_eps: Optional[float] = None
attention_layer_norm_with_affine: bool = True
max_sequence_length: int = 1024
max_position_embeddings: Optional[int] = None
include_bias: bool = True
bias_for_layer_norm: Optional[bool] = None
scale_logits: bool = False
vocab_size: int = 50257
embedding_size: Optional[int] = 50304
additional_vocab_size: Optional[int] = None
new_embedding_init_range: float = 0.02
weight_tying: bool = True
pad_token_id: int = -1
init_device: Optional[str] = None
init_std: float = 0.02
init_cutoff_factor: Optional[float] = None
norm_after: bool = False
precision: Optional[str] = None
max_crops: int = 12
crop_mode: str = "patchify-v2-and-resize-c2"
do_random_scale: bool = True
use_col_tokens: bool = True
image_padding_embed: Optional[str] = None
vit_layers: Tuple = (-1,)
image_pooling_h: int = 2
image_pooling_w: int = 2
image_pooling_2d: str = "attention"
image_projector: str = "mlp"
image_feature_dropout: float = 0.0
use_cls_feature: bool = False
initializer_range: float = 0.02
pad_tokenizer: bool = False
normalize_input_embeds: bool = False
use_position_ids: bool = True
query_pre_attn_scalar: int = 224
@property
def effective_n_kv_heads(self) -> int:
if self.n_kv_heads is None:
if self.multi_query_attention is True:
return 1
else:
return self.n_heads
else:
if self.multi_query_attention is None:
return self.n_kv_heads
if self.multi_query_attention:
n_kv_heads_should_be = 1
else:
n_kv_heads_should_be = self.n_heads
if self.n_kv_heads == n_kv_heads_should_be:
return n_kv_heads_should_be
else:
raise OLMoConfigurationError(
"You can't set `multi_query_attention` and `n_kv_heads` at the same time."
)
@property
def image_num_patch(self):
assert self.vision_backbone is not None
return self.vision_backbone.image_num_patch
@property
def image_patch_size(self):
assert self.vision_backbone is not None
return self.visoin_backbone.image_patch_size
def llm_patches_per_crop(self):
h, w = self.image_num_patch
# Round up in case we need to pad the image features for pooling
h = (h + self.image_pooling_h - 1) // self.image_pooling_h
w = (w + self.image_pooling_w - 1) // self.image_pooling_w
return h, w
def _expand_token(token, batch_size: int):
return token.view(1, 1, -1).expand(batch_size, -1, -1)
class LayerNormFp32(nn.LayerNorm):
"""Subclass torch's LayerNorm to handle fp16 (by casting to float32 and back).
Derived from https://github.com/mlfoundations/open_clip/blob/main/src/open_clip/transformer.py.
"""
def forward(self, x: torch.Tensor) -> torch.Tensor:
orig_type = x.dtype
x = F.layer_norm(x.to(torch.float32), self.normalized_shape, self.weight, self.bias, self.eps)
return x.to(orig_type)
class ViTMLP(nn.Module):
def __init__(self, config: FullMolmoConfig):
super().__init__()
self.config = config
v_cfg = config.vision_backbone
self.w1 = nn.Linear(
v_cfg.image_emb_dim,
v_cfg.image_mlp_dim,
bias=True,
device=config.init_device,
)
# Activation function.
cfg = deepcopy(config)
cfg.activation_type = v_cfg.image_mlp_activations
self.act = Activation.build(cfg)
self.w2 = nn.Linear(
v_cfg.image_mlp_dim,
v_cfg.image_emb_dim,
bias=True,
device=config.init_device,
)
def reset_parameters(self):
v_cfg = self.config.vision_backbone
nn.init.trunc_normal_(self.w1.weight, std=math.sqrt(1 / v_cfg.image_emb_dim), a=-2.0, b=2.0)
nn.init.trunc_normal_(self.w2.weight, std=math.sqrt(1 / v_cfg.image_mlp_dim), a=-2.0, b=2.0)
nn.init.zeros_(self.w1.bias)
nn.init.zeros_(self.w2.bias)
def forward(self, x: torch.Tensor) -> torch.Tensor:
x = self.w1(x)
x = self.act(x)
x = self.w2(x)
return x
class ResidualAttentionBlock(nn.Module):
def __init__(self, config: FullMolmoConfig):
super().__init__()
self.config = config
v_cfg = config.vision_backbone
self.attention = MultiHeadDotProductAttention(config)
self.feed_forward = ViTMLP(config)
self.attention_norm = nn.LayerNorm(
v_cfg.image_emb_dim,
eps=v_cfg.image_norm_eps,
device=config.init_device,
)
self.ffn_norm = nn.LayerNorm(
v_cfg.image_emb_dim,
eps=v_cfg.image_norm_eps,
device=config.init_device,
)
def reset_parameters(self):
self.attention.reset_parameters()
self.feed_forward.reset_parameters()
self.attention_norm.reset_parameters()
self.ffn_norm.reset_parameters()
def forward(self, x: torch.Tensor) -> torch.Tensor:
x = x + self.attention(self.attention_norm(x))
x = x + self.feed_forward(self.ffn_norm(x))
return x
class BlockCollection(nn.Module):
def __init__(self, config: FullMolmoConfig):
super().__init__()
self.config = config
self.grad_checkpointing: bool = False
v_cfg = config.vision_backbone
self.resblocks = nn.ModuleList([
ResidualAttentionBlock(config) for _ in range(v_cfg.image_num_layers)
])
def reset_parameters(self):
for r in self.resblocks:
r.reset_parameters()
def forward(self, x: torch.Tensor) -> List[torch.Tensor]:
hidden_states = []
for r in self.resblocks:
x = r(x)
hidden_states.append(x)
return hidden_states
class VisionTransformer(nn.Module):
def __init__(self, config: FullMolmoConfig):
super().__init__()
self.config = config
v_cfg = config.vision_backbone
# class embeddings and positional embeddings
self.scale = v_cfg.image_emb_dim ** -0.5
self.class_embedding = nn.Parameter(
torch.zeros(v_cfg.image_emb_dim, device=config.init_device),
)
self.num_prefix_tokens: int = 1
self.positional_embedding = nn.Parameter(
torch.zeros(v_cfg.image_num_pos, v_cfg.image_emb_dim, device=config.init_device),
)
image_patch_size = v_cfg.image_patch_size
self.patch_embedding = nn.Linear(
image_patch_size * image_patch_size * 3,
v_cfg.image_emb_dim,
bias=False,
device=config.init_device,
)
self.pre_ln = LayerNormFp32(
v_cfg.image_emb_dim,
eps=v_cfg.image_norm_eps,
device=config.init_device,
)
self.transformer = BlockCollection(config)
@torch.jit.ignore
def set_grad_checkpointing(self, enable=True):
self.transformer.grad_checkpointing = enable
def reset_parameters(self):
nn.init.normal_(self.class_embedding, std=self.scale)
nn.init.normal_(self.positional_embedding, std=self.scale)
nn.init.normal_(self.patch_embedding.weight, std=0.02)
self.pre_ln.reset_parameters()
self.transformer.reset_parameters()
def add_pos_emb(self, x: torch.Tensor, patch_num: int) -> torch.Tensor:
cls_emb = self.positional_embedding[0:1]
pos_emb = self.positional_embedding[1:]
pos_emb = pos_emb.reshape(
(int(math.sqrt(pos_emb.shape[0])), int(math.sqrt(pos_emb.shape[0])), pos_emb.shape[1])
)
(patch_num_0, patch_num_1) = patch_num
if pos_emb.shape[0] != patch_num_0 or pos_emb.shape[1] != patch_num_1:
# Dervied from https://github.com/facebookresearch/mae/blob/main/util/pos_embed.py
# antialias: default True in jax.image.resize
pos_emb = pos_emb.unsqueeze(0).permute(0, 3, 1, 2)
pos_emb = F.interpolate(
pos_emb, size=(patch_num_0, patch_num_1), mode="bicubic", align_corners=False, antialias=True,
)
pos_emb = pos_emb.permute(0, 2, 3, 1).squeeze(0)
pos_emb = pos_emb.reshape(-1, pos_emb.shape[-1])
x = x + torch.cat([cls_emb[None, :, :], pos_emb[None, :, :]], dim=1).to(x.dtype)
return x
def forward(self, x: torch.Tensor, patch_num: int = None) -> List[torch.Tensor]:
"""
: param x: (batch_size, num_patch, n_pixels)
"""
if patch_num is None:
patch_num = self.config.vision_backbone.image_num_patch
B, N, D = x.shape
x = self.patch_embedding(x)
# class embeddings and positional embeddings
x = torch.cat([_expand_token(self.class_embedding, x.shape[0]).to(x.dtype), x], dim=1)
x = self.add_pos_emb(x, patch_num)
x = self.pre_ln(x)
hidden_states = self.transformer(x)
return hidden_states
class MultiHeadDotProductAttention(nn.Module):
def __init__(self, config: FullMolmoConfig, use_bias: bool = True, is_vit_layer: Optional[bool] = True):
super().__init__()
self.config = config
self.use_bias = use_bias
v_cfg = config.vision_backbone
self.embed_dim = v_cfg.image_emb_dim
self.num_heads = v_cfg.image_num_heads
self.head_dim = v_cfg.image_head_dim
self.num_key_value_heads = v_cfg.image_num_key_value_heads
self.num_key_value_groups = self.num_heads // self.num_key_value_heads
self.initializer_range = v_cfg.initializer_range
self.is_vit_layer = is_vit_layer
nlayers = 1 if (is_vit_layer or config.vit_layers is None) else len(config.vit_layers)
self.wq = nn.Linear(
nlayers * self.embed_dim,
self.num_heads * self.head_dim,
bias=use_bias,
device=config.init_device,
)
self.wk = nn.Linear(
nlayers * self.embed_dim,
self.num_key_value_heads * self.head_dim,
bias=use_bias,
device=config.init_device,
)
self.wv = nn.Linear(
nlayers * self.embed_dim,
self.num_key_value_heads * self.head_dim,
bias=use_bias,
device=config.init_device,
)
self.wo = nn.Linear(
self.num_heads * self.head_dim,
self.embed_dim,
bias=use_bias,
device=config.init_device,
)
self.attention_dropout: Optional[Dropout] = None
if v_cfg.attention_dropout > 0:
self.attention_dropout = Dropout(v_cfg.attention_dropout, broadcast_dims=(0, 1))
self.residual_dropout = Dropout(v_cfg.residual_dropout)
def reset_parameters(self):
nn.init.normal_(self.wq.weight, std=self.initializer_range)
nn.init.normal_(self.wk.weight, std=self.initializer_range)
nn.init.normal_(self.wv.weight, std=self.initializer_range)
nn.init.normal_(self.wo.weight, std=self.initializer_range)
if self.use_bias:
nn.init.constant_(self.wq.bias, 0)
nn.init.constant_(self.wk.bias, 0)
nn.init.constant_(self.wv.bias, 0)
nn.init.constant_(self.wo.bias, 0)
def _split_heads(self, hidden_states, num_heads) -> torch.Tensor:
return hidden_states.reshape(hidden_states.shape[:2] + (num_heads, self.head_dim))
def _merge_heads(self, hidden_states) -> torch.Tensor:
return hidden_states.reshape(hidden_states.shape[:2] + (self.embed_dim,))
def forward(self, inputs_q: torch.Tensor, inputs_kv: Optional[torch.Tensor] = None) -> torch.Tensor:
if inputs_kv is not None:
inputs_k = inputs_kv
inputs_v = inputs_kv
else:
inputs_k = inputs_q
inputs_v = inputs_q
xq, xk, xv = self.wq(inputs_q), self.wk(inputs_k), self.wv(inputs_v)
xq = self._split_heads(xq, self.num_heads)
xk = self._split_heads(xk, self.num_key_value_heads)
xv = self._split_heads(xv, self.num_key_value_heads)
if self.num_heads != self.num_key_value_heads:
xk = xk.repeat_interleave(self.num_key_value_groups, dim=2, output_size=self.num_heads)
xv = xv.repeat_interleave(self.num_key_value_groups, dim=2, output_size=self.num_heads)
og_dtype = xq.dtype
if self.config.float32_attention:
xq = xq.to(torch.float)
xk = xk.to(torch.float)
if self.config.attention_type == "direct":
attn_weights = torch.einsum("...qhd,...khd->...hqk", xq / math.sqrt(xq.size(-1)), xk)
attn_weights = F.softmax(attn_weights, dim=-1, dtype=torch.float32).to(xq.dtype)
if self.attention_dropout is not None:
attn_weights = self.attention_dropout(attn_weights)
attn_output = torch.einsum("...hqk,...khd->...qhd", attn_weights.to(xv.dtype), xv)
elif self.config.attention_type == "sdpa":
attn_output = F.scaled_dot_product_attention(
xq.transpose(1, 2).contiguous(),
xk.transpose(1, 2).contiguous(),
xv.transpose(1, 2).contiguous(),
is_causal=False,
dropout_p=self.config.vision_backbone.attention_dropout
).transpose(1, 2)
else:
raise NotImplementedError(self.config.attention_type)
attn_output = attn_output.to(og_dtype)
attn_output = self._merge_heads(attn_output)
attn_output = self.wo(attn_output)
attn_output = self.residual_dropout(attn_output)
return attn_output
class MultiHeadAttentionPool(nn.Module):
def __init__(
self,
config: FullMolmoConfig,
factor: int = 1,
use_bias: bool = True,
dropout: bool = True,
output_layer: bool = True,
mean_residual: bool = False,
query: str = "mean",
is_vit_layer: Optional[bool] = True
):
super().__init__()
self.config = config
self.factor = factor
self.use_bias = use_bias
self.dropout = dropout
self.output_layer = output_layer
self.mean_residual = mean_residual
self.query = query
v_cfg = config.vision_backbone
input_dim = v_cfg.image_emb_dim
self.embed_dim = v_cfg.image_emb_dim * factor
self.num_heads = v_cfg.image_num_heads
self.head_dim = v_cfg.image_head_dim * factor
self.num_key_value_heads = v_cfg.image_num_key_value_heads
self.num_key_value_groups = self.num_heads // self.num_key_value_heads
self.initializer_range = v_cfg.initializer_range
nlayers = 1 if (is_vit_layer or config.vit_layers is None) else len(config.vit_layers)
if query != "vector":
self.wq = nn.Linear(
nlayers * input_dim,
self.num_heads * self.head_dim,
bias=use_bias,
device=config.init_device,
)
self.wk = nn.Linear(
nlayers * input_dim,
self.num_key_value_heads * self.head_dim,
bias=use_bias,
device=config.init_device,
)
self.wv = nn.Linear(
nlayers * input_dim,
self.num_key_value_heads * self.head_dim,
bias=use_bias,
device=config.init_device,
)
if query == "vector":
self.attention_query = nn.Parameter(
torch.zeros(
1, self.num_key_value_heads * self.head_dim, device=config.init_device,
),
)
if output_layer:
self.wo = nn.Linear(
self.num_heads * self.head_dim,
self.embed_dim,
bias=use_bias,
device=config.init_device,
)
self.attention_dropout = Dropout(v_cfg.attention_dropout, broadcast_dims=(0, 1))
if dropout:
self.residual_dropout = Dropout(v_cfg.residual_dropout)
def reset_parameters(self):
if self.query != "vector":
nn.init.normal_(self.wq.weight, std=self.initializer_range)
nn.init.normal_(self.wk.weight, std=self.initializer_range)
nn.init.normal_(self.wv.weight, std=self.initializer_range)
if self.output_layer:
nn.init.normal_(self.wo.weight, std=self.initializer_range)
if self.use_bias:
if self.query != "vector":
nn.init.constant_(self.wq.bias, 0)
nn.init.constant_(self.wk.bias, 0)
nn.init.constant_(self.wv.bias, 0)
if self.output_layer:
nn.init.constant_(self.wo.bias, 0)
if self.query == "vector":
nn.init.normal_(self.attention_query, std=self.initializer_range)
def _split_heads(self, hidden_states, num_heads):
return hidden_states.reshape(hidden_states.shape[:2] + (num_heads, self.head_dim))
def _merge_heads(self, hidden_states):
return hidden_states.reshape(hidden_states.shape[:2] + (self.embed_dim,))
def forward(self, inputs_kv: torch.Tensor) -> torch.Tensor:
xk, xv = self.wk(inputs_kv), self.wv(inputs_kv)
if self.query == "mean":
inputs_q = inputs_kv.mean(dim=1, keepdim=True)
xq = self.wq(inputs_q)
elif self.query == "first":
inputs_q = inputs_kv[:, :1]
xq = self.wq(inputs_q)
elif self.query == "vector":
xq = self.attention_query.expand(inputs_kv.size(0), -1, -1)
elif self.query == "constant":
inputs_q = torch.ones_like(inputs_kv[:, :1]) / math.sqrt(inputs_kv.shape[-1])
xq = self.wq(inputs_q)
else:
raise ValueError(f"Unknown query type: {self.query}")
xq = self._split_heads(xq, self.num_heads)
xk = self._split_heads(xk, self.num_key_value_heads)
xv = self._split_heads(xv, self.num_key_value_heads)
if self.num_heads != self.num_key_value_heads:
xk = xk.repeat_interleave(self.num_key_value_groups, dim=2, output_size=self.num_heads)
xv = xv.repeat_interleave(self.num_key_value_groups, dim=2, output_size=self.num_heads)
xq = xq.to(torch.float)
xk = xk.to(torch.float)
xq = xq / math.sqrt(xq.size(-1))
attn_weights = torch.einsum("...qhd,...khd->...hqk", xq, xk)
attn_weights = F.softmax(attn_weights, dim=-1).to(xq.dtype)
attn_weights = self.attention_dropout(attn_weights).to(xv.dtype)
attn_output = torch.einsum("...hqk,...khd->...qhd", attn_weights, xv)
attn_output = self._merge_heads(attn_output)
if self.output_layer:
attn_output = self.wo(attn_output)
if self.dropout:
attn_output = self.residual_dropout(attn_output)
if self.mean_residual:
attn_output += inputs_kv.mean(dim=1, keepdim=True)
return attn_output
class MLP(nn.Module):
def __init__(self, config: FullMolmoConfig, input_dim: int, dropout: float = 0.0):
super().__init__()
self.config = config
self.hidden_size = (
config.mlp_hidden_size if config.mlp_hidden_size is not None else config.mlp_ratio * config.d_model
)
self.initializer_range = config.initializer_range
self.w1 = nn.Linear(
input_dim,
self.hidden_size // 2,
bias=False,
device=config.init_device,
)
self.w2 = nn.Linear(
self.hidden_size // 2,
config.d_model,
bias=False,
device=config.init_device,
)
self.w3 = nn.Linear(
input_dim,
self.hidden_size // 2,
bias=False,
device=config.init_device,
)
# Activation function.
self.act = Activation.build(config)
self.dropout = Dropout(dropout)
def reset_parameters(self):
nn.init.normal_(self.w1.weight, std=self.initializer_range)
nn.init.normal_(self.w2.weight, std=self.initializer_range)
nn.init.normal_(self.w3.weight, std=self.initializer_range)
def forward(self, x: torch.Tensor) -> torch.Tensor:
x = self.w2(self.act(self.w1(x), self.w3(x)))
x = self.dropout(x)
return x
class Residual(nn.Module):
def __init__(self, submodule: nn.Module):
super().__init__()
self.submodule = submodule
def reset_parameters(self):
self.submodule.reset_parameters()
def forward(self, x: torch.Tensor) -> torch.Tensor:
return x + self.submodule(x)
class OLMoVisionBackbone(nn.Module):
def __init__(self, config: FullMolmoConfig):
super().__init__()
self.config = config
self.image_vit = VisionTransformer(config)
input_dim: int = None
self.image_pooling_2d: nn.Module = None
if config.image_pooling_2d in {ImagePooling2DType.attention, ImagePooling2DType.attention_meanq}:
self.image_pooling_2d = MultiHeadDotProductAttention(config, is_vit_layer=False)
input_dim = config.vision_backbone.image_emb_dim
elif config.image_pooling_2d == ImagePooling2DType.attention_2wide:
cfg = deepcopy(config)
cfg.vision_backbone.image_emb_dim *= 2
cfg.vision_backbone.image_head_dim *= 2
self.image_pooling_2d = MultiHeadDotProductAttention(cfg, is_vit_layer=False)
input_dim = cfg.vision_backbone.image_emb_dim
elif config.image_pooling_2d == ImagePooling2DType.attention_v2:
assert config.vit_layers is not None
use_bias = True
dropout = True
output_layer = True
query = "mean"
mean_residual = False
factor = len(config.vit_layers)
self.image_pooling_2d = MultiHeadAttentionPool(
config,
factor=factor,
use_bias=use_bias,
dropout=dropout,
output_layer=output_layer,
mean_residual=mean_residual,
query=query,
is_vit_layer=False,
)
input_dim = config.vision_backbone.image_emb_dim * factor
elif config.image_pooling_2d in [ImagePooling2DType.none, ImagePooling2DType.stack]:
self.image_pooling_2d = None
nlayers = 1 if config.vit_layers is None else len(config.vit_layers)
input_dim = nlayers * config.vision_backbone.image_emb_dim
else:
raise NotImplementedError(f"Unknown image pooling 2D method: {config.image_pooling_2d}")
self.input_dim = input_dim
# `MLP` assume the activation takes two inputs, so it must be a 'llama' version
if config.activation_type == ActivationType.swiglu:
mlp_config = replace(config, activation_type=ActivationType.llama_swiglu)
elif config.activation_type == ActivationType.gelu:
mlp_config = replace(config, activation_type=ActivationType.llama_geglu)
else:
mlp_config = config
if config.image_projector == ImageProjectType.mlpx2:
self.image_projector = nn.ModuleList(
[MLP(mlp_config, input_dim), Residual(MLP(config, input_dim))]
)
elif config.image_projector == ImageProjectType.mlp:
self.image_projector = MLP(mlp_config, input_dim)
elif config.image_projector == ImageProjectType.linear:
self.image_projector = nn.Linear(
input_dim,
config.d_model,
bias=False,
device=config.init_device,
)
else:
raise NotImplementedError(f"Unknown image projector: {config.image_projector}")
self.image_feature_dropout = Dropout(config.image_feature_dropout)
def reset_parameters(self):
if self.image_pooling_2d is not None:
self.image_pooling_2d.reset_parameters()
if self.config.image_projector == "2mlp":
for module in self.image_projector:
module.reset_parameters()
elif self.config.image_projector == "linear":
nn.init.xavier_uniform_(self.image_projector.weight)
else:
self.image_projector.reset_parameters()
def forward(self, images: torch.Tensor, image_masks: torch.Tensor) -> Tuple[torch.Tensor, Optional[torch.Tensor]]:
raise NotImplementedError
class OLMoPretrainedVisionBackbone(OLMoVisionBackbone):
def __init__(self, config: FullMolmoConfig):
super().__init__(config)
v_cfg = self.config.vision_backbone
self.grad_checkpointing = False
self.num_prefix_tokens = self.image_vit.num_prefix_tokens
assert self.num_prefix_tokens in {0, 1}, "Only 0 or 1 prefix tokens are supported"
if config.use_cls_feature:
assert self.num_prefix_tokens > 0, "The model does not have a CLS token"
nlayers = 1 if config.vit_layers is None else len(config.vit_layers)
self.cls_projector = nn.Linear(
nlayers * v_cfg.image_emb_dim,
self.input_dim,
bias=False,
device=config.init_device,
)
self.pad_embed = None
if config.image_padding_embed:
image_dim = v_cfg.image_emb_dim*len(self.config.vit_layers)
if config.image_padding_embed in ["pad_embed", "regress"]:
self.pad_embed = nn.Parameter(
torch.zeros((image_dim,), device=config.init_device))
elif config.image_padding_embed == "pad_and_partial_pad":
self.pad_embed = nn.Parameter(
torch.zeros((2, image_dim), device=config.init_device))
else:
raise ValueError(config.image_padding_embed)
def reset_parameters(self):
super().reset_parameters()
self.image_vit.reset_parameters()
if self.config.use_cls_feature:
nn.init.xavier_uniform_(self.cls_projector.weight)
def encode_image(self, images: torch.Tensor) -> torch.Tensor:
"""
: param images: (batch_size, num_crops, num_patch, n_pixels)
"""
cfg = self.config
v_cfg = self.config.vision_backbone
B, T, N, D = images.shape
mask = torch.all(images.view(B * T, N, D) != -1, dim=(1, 2), keepdim=True)
# Output all hidden states
# n_layers x (batch_num_crops, (1+)n_tokens, image_emb_dim)
images = images.view(B * T, N, D)
image_features = self.image_vit(images)
if cfg.vit_layers is not None:
features = []
for layer in cfg.vit_layers:
features.append(image_features[layer])
image_features = torch.cat(features, dim=-1)
else:
image_features = image_features[-1]
cls_embed: torch.Tensor = None
if self.num_prefix_tokens > 0:
cls_embed = image_features[:, 0]
image_features = image_features[:, 1:]
image_features = image_features * mask
image_features = image_features.view(B, T, N, -1)
cls_embed = cls_embed.view(B, T, -1) if cls_embed is not None else None
return image_features, cls_embed
def forward(self, images: torch.Tensor, image_masks: torch.Tensor) -> Tuple[torch.Tensor, Optional[torch.Tensor]]:
cfg = self.config
# image_features: (batch_size, num_crops(=num_image), num_patch, nximage_emb_dim)
batch_size, num_image = images.shape[:2]
image_features, cls_embed = self.encode_image(images)
if cfg.image_padding_embed:
assert image_masks is not None
if cfg.image_padding_embed == "pad_embed":
all_pad = (image_masks == 0).to(dtype=torch.float32)
pad_embed = self.pad_embed[None, None, None, :]
image_features = image_features + pad_embed * torch.unsqueeze(all_pad, -1)
elif cfg.image_padding_embed == "regress":
pad_embed = self.pad_embed[None, None, None, :]
image_features = image_features + pad_embed * torch.unsqueeze(torch.maximum(image_masks, torch.zeros_like(image_masks)), -1)
elif cfg.image_padding_embed == "pad_and_partial_pad":
pad_embed = self.pad_embed[:, None, None, None, :]
all_pad = image_masks == 0
partial_pad = torch.logical_and(image_masks < 1, torch.logical_not(all_pad)).to(dtype=torch.float32)
all_pad = all_pad.to(dtype=torch.float32)
image_features = image_features + pad_embed[0] * torch.unsqueeze(all_pad, -1)
image_features = image_features + pad_embed[1] * torch.unsqueeze(partial_pad, -1)
else:
raise ValueError(cfg.image_padding_embed)
image_features = self.image_feature_dropout(image_features)
if cls_embed is not None:
cls_embed = self.image_feature_dropout(cls_embed)
image_features = image_features.reshape(
(batch_size, num_image) + cfg.image_num_patch + (-1,),
)
if cfg.image_num_patch[0] % cfg.image_pooling_h == 1:
# Pad so we can still pool 2x2 patches
image_features = F.pad(
image_features,
(0, 0, 0, 1, 0, 1, 0, 0, 0, 0),
)
# image pooling
image_features = einops.rearrange(
image_features,
'b n (h dh) (w dw) c -> (b n h w) (dh dw) c',
dh=cfg.image_pooling_h,
dw=cfg.image_pooling_w,
)
if cfg.image_pooling_2d == ImagePooling2DType.attention_meanq:
query = image_features.mean(-2, keepdim=True)
image_features = self.image_pooling_2d(query, image_features)
elif cfg.image_pooling_2d not in {ImagePooling2DType.none, ImagePooling2DType.stack}:
if self.grad_checkpointing:
from torch.utils.checkpoint import checkpoint
image_features = checkpoint(self.image_pooling_2d, image_features[:, :1, :], image_features, use_reentrant=False)
else:
image_features = self.image_pooling_2d(image_features[:, :1, :], image_features)
h, w = cfg.llm_patches_per_crop()
image_features = image_features.reshape(batch_size, num_image, h * w, -1)
# MLP layer to map the feature.
if self.grad_checkpointing:
from torch.utils.checkpoint import checkpoint
image_features = checkpoint(self.image_projector, image_features, use_reentrant=False)
else:
image_features = self.image_projector(image_features)
if self.config.use_cls_feature:
raise NotImplementedError()
# image_features: (batch_size, num_image, num_patch, d_model)
# cls_embed: (batch_size, num_image, d_model)
return image_features, cls_embed
class ModuleType(str, Enum):
in_module = "in"
out_module = "out"
emb = "emb"
final_out = "final_out"
def init_weights(
config: FullMolmoConfig,
module: Union[nn.Linear, nn.Embedding],
d: Optional[int] = None,
layer_id: Optional[int] = None,
std_factor: float = 1.0,
type_of_module: Optional[ModuleType] = None,
) -> None:
d = d if d is not None else config.d_model
std = config.init_std * std_factor
if config.init_cutoff_factor is not None:
cutoff_value = config.init_cutoff_factor * std
nn.init.trunc_normal_(module.weight, mean=0.0, std=std, a=-cutoff_value, b=cutoff_value)
else:
nn.init.normal_(module.weight, mean=0.0, std=std)
class LlamaSwiGLU(nn.Module):
def forward(self, x1: torch.Tensor, x2: torch.Tensor) -> torch.Tensor:
return F.silu(x1) * x2
@property
def output_multiplier(self) -> float:
return 0.5
class SwiGLU(nn.Module):
def forward(self, x: torch.Tensor) -> torch.Tensor:
x, gate = x.chunk(2, dim=-1)
return F.silu(gate) * x
@property
def output_multiplier(self) -> float:
return 0.5
class Activation(nn.Module):
def __init__(self, config: FullMolmoConfig):
super().__init__()
self.config = config
def forward(self, x: torch.Tensor) -> torch.Tensor:
raise NotImplementedError
@property
def output_multiplier(self) -> float:
raise NotImplementedError
@classmethod
def build(cls, config: FullMolmoConfig) -> 'Activation':
if config.activation_type == "quick_gelu":
return QuickGELU(config)
elif config.activation_type == "gelu":
return cast(Activation, GELU(approximate="none"))
elif config.activation_type == "gelu_tanh":
return cast(Activation, GELU(approximate="tanh"))
elif config.activation_type == "relu":
return cast(Activation, ReLU(inplace=False))
elif config.activation_type == "silu":
return cast(Activation, SiLU(inplace=False))
# elif config.activation_type == "llama_geglu":
# return LlamaGEGLU(config)
# elif config.activation_type == "llama_geglu_tanh":
# return LlamaGEGLUTanh(config)
elif config.activation_type == "llama_swiglu":
return LlamaSwiGLU()
elif config.activation_type == "swiglu":
return SwiGLU()
else:
raise NotImplementedError(f"Unknown activation: '{config.activation_type}'")
class QuickGELU(Activation):
def forward(self, x: torch.Tensor) -> torch.Tensor:
return x * torch.sigmoid(1.702 * x)
@property
def output_multiplier(self) -> float:
return 1.0
class GELU(nn.GELU):
@property
def output_multiplier(self) -> float:
return 1.0
class ReLU(nn.ReLU):
@property
def output_multiplier(self) -> float:
return 1.0
class SiLU(nn.SiLU):
@property
def output_multiplier(self) -> float:
return 1.0
def causal_attention_bias(seq_len: int, device: torch.device) -> torch.FloatTensor:
att_bias = torch.triu(
torch.ones(seq_len, seq_len, device=device, dtype=torch.float),
diagonal=1,
)
att_bias.masked_fill_(att_bias == 1, torch.finfo(att_bias.dtype).min)
return att_bias.view(1, 1, seq_len, seq_len) # type: ignore
def get_causal_attention_bias(cache: BufferCache, seq_len: int, device: torch.device) -> torch.Tensor:
if (causal_bias := cache.get("causal_attention_bias")) is not None and causal_bias.shape[-1] >= seq_len:
if causal_bias.device != device:
causal_bias = causal_bias.to(device)
cache["causal_attention_bias"] = causal_bias
return causal_bias
with torch.autocast(device.type, enabled=False):
causal_bias = causal_attention_bias(seq_len, device)
cache["causal_attention_bias"] = causal_bias
return causal_bias
class LayerNormBase(nn.Module):
def __init__(
self,
config: MolmoConfig,
*,
size: Optional[int] = None,
elementwise_affine: Optional[bool] = True,
eps: float = 1e-05,
weight_initializer: Optional[Callable] = torch.ones,
bias_initializer: Optional[Callable] = torch.zeros,
):
super().__init__()
self.config = config
self.eps = self.config.layer_norm_eps or eps
self.normalized_shape = (size or config.d_model,)
if elementwise_affine or (elementwise_affine is None and self.config.layer_norm_with_affine):
self.weight = nn.Parameter(weight_initializer(self.normalized_shape, device=config.init_device))
use_bias = self.config.bias_for_layer_norm
if use_bias is None:
use_bias = self.config.include_bias
if use_bias:
self.bias = nn.Parameter(bias_initializer(self.normalized_shape, device=config.init_device))
else:
self.register_parameter("bias", None)
else:
self.register_parameter("bias", None)
self.register_parameter("weight", None)
@classmethod
def build(cls, config: FullMolmoConfig, size: Optional[int] = None, **kwargs):
if config.layer_norm_type == "default":
return LayerNorm(config, size=size, low_precision=False, **kwargs)
elif config.layer_norm_type == "low_precision":
return LayerNorm(config, size=size, low_precision=True, **kwargs)
elif config.layer_norm_type == "rms":
return RMSLayerNorm(config, size=size, **kwargs)
else:
raise NotImplementedError(f"Unknown LayerNorm type: '{config.layer_norm_type}'")
class RMSLayerNorm(LayerNormBase):
"""
RMS layer norm, a simplified :class:`LayerNorm` implementation
"""
def __init__(
self,
config: FullMolmoConfig,
size: Optional[int] = None,
elementwise_affine: Optional[bool] = None,
eps: float = 1e-5,
):
super().__init__(config, size=size, elementwise_affine=elementwise_affine, eps=eps)
def forward(self, x: torch.Tensor) -> torch.Tensor:
with torch.autocast(enabled=False, device_type=x.device.type):
og_dtype = x.dtype
x = x.to(torch.float32)
variance = x.pow(2).mean(-1, keepdim=True)
x = x * torch.rsqrt(variance + self.eps)
x = x.to(og_dtype)
if self.weight is not None:
if self.bias is not None:
return self.weight * x + self.bias
else:
return self.weight * x
else:
return x
class LayerNorm(LayerNormBase):
"""
The default :class:`LayerNorm` implementation which can optionally run in low precision.
"""
def __init__(
self,
config: FullMolmoConfig,
size: Optional[int] = None,
low_precision: bool = False,
elementwise_affine: Optional[bool] = None,
eps: float = 1e-05,
):
super().__init__(config, size=size, elementwise_affine=elementwise_affine, eps=eps)
self.low_precision = low_precision
def forward(self, x: torch.Tensor) -> torch.Tensor:
if self.low_precision:
module_device = x.device
downcast_x = self._cast_if_autocast_enabled(x)
downcast_weight = (
self._cast_if_autocast_enabled(self.weight) if self.weight is not None else self.weight
)
downcast_bias = self._cast_if_autocast_enabled(self.bias) if self.bias is not None else self.bias
with torch.autocast(enabled=False, device_type=module_device.type):
return F.layer_norm(
downcast_x, self.normalized_shape, weight=downcast_weight, bias=downcast_bias, eps=self.eps
)
else:
return F.layer_norm(x, self.normalized_shape, weight=self.weight, bias=self.bias, eps=self.eps)
class MOLMo(nn.Module):
def __init__(self, config: FullMolmoConfig, init_params: bool = True):
super().__init__()
self.config = config
self.__cache = BufferCache()
# Validate config.
if self.config.embedding_size is not None and self.config.embedding_size != self.config.vocab_size:
if self.config.embedding_size < self.config.vocab_size:
raise OLMoConfigurationError("embedding size should be at least as big as vocab size")
elif self.config.embedding_size % 128 != 0:
import warnings
warnings.warn(
"Embedding size is not a multiple of 128! This could hurt throughput performance.", UserWarning
)
torch.backends.cuda.enable_flash_sdp(True)
torch.backends.cuda.enable_mem_efficient_sdp(False) # this is super slow so make sure torch won't use it
wte = None
if self.config.additional_vocab_size is not None:
wte = Embedding(
config.embedding_size or config.vocab_size,
config.additional_vocab_size,
config.d_model,
device=config.init_device,
initializer_range=config.initializer_range,
new_embed_initializer_range=config.new_embedding_init_range
)
else:
wte=nn.Embedding(
config.embedding_size or config.vocab_size, config.d_model, device=config.init_device
)
self.transformer = nn.ModuleDict(
dict(
wte=wte,
emb_drop=Dropout(config.embedding_dropout),
ln_f=LayerNorm.build(config),
)
)
blocks = [OLMoBlock.build(i, config, self.__cache) for i in range(config.n_layers)]
if self.config.block_group_size > 1:
raise NotImplementedError()
else:
self.transformer.update({"blocks": nn.ModuleList(blocks)})
if not (self.config.alibi or self.config.rope):
self.transformer.update(
{"wpe": nn.Embedding(config.max_sequence_length, config.d_model, device=config.init_device)}
)
if not config.weight_tying:
self.transformer.update(
{
"ff_out": nn.Linear(
config.d_model,
config.embedding_size or config.vocab_size,
bias=config.include_bias,
device=config.init_device,
)
}
)
self.vision_backbone: Optional[OLMoVisionBackbone] = None
if config.vision_backbone is not None:
self.vision_backbone = OLMoPretrainedVisionBackbone(config)
self.__num_fwd_flops: Optional[int] = None
def reset_parameters(self):
if self.vision_backbone is not None:
self.vision_backbone.reset_parameters()
self.reset_non_vision_parameters()
def reset_non_vision_parameters(self):
self.transformer.wte.reset_parameters()
if hasattr(self.transformer.wte, "new_embedding"):
nn.init.normal_(self.transformer.wte.new_embedding, std=self.config.new_embedding_init_range)
if hasattr(self.transformer, "wpe"):
nn.init.normal_(self.transformer.wpe, mean=0.0, std=1.0)
self.transformer.ln_f.reset_parameters() # type: ignore
if hasattr(self.transformer, "ff_out"):
nn.init.normal_(self.transformer.ff_out, mean=0.0, std=0.02)
if self.config.block_group_size == 1:
for block in self.transformer.blocks:
block.reset_parameters()
else:
for block_group in self.transformer.block_groups:
block_group.reset_parameters()
def forward(
self,
input_ids: torch.LongTensor,
input_embeddings: Optional[torch.FloatTensor] = None,
attention_mask: Optional[torch.Tensor] = None,
attention_bias: Optional[torch.Tensor] = None,
response_mask: Optional[torch.Tensor] = None,
images: Optional[torch.Tensor] = None,
image_masks: Optional[torch.Tensor] = None,
image_input_idx: Optional[torch.Tensor] = None,
subsegment_ids: Optional[torch.Tensor] = None,
position_ids: Optional[torch.Tensor] = None,
past_key_values: Optional[Sequence[Tuple[torch.Tensor, torch.Tensor]]] = None,
use_cache: bool = False,
last_logits_only: bool = False,
output_hidden_states: Optional[bool] = None,
append_last_valid_logits: Optional[torch.Tensor] = None,
) -> ModelOutput:
"""
:param input_ids: A tensor of shape `(batch_size, seq_len)`.
:param input_embeddings: A tensor of shape `(batch_size, seq_len, d_model)` with input
embeddings. When provided, it is treated as the output of the input embedding layer.
:param attention_mask: A tensor of shape `(batch_size, seq_len)` that indicates
which input IDs are masked. A `1` value in the mask means that
the corresponding input ID should *not* be ignored. A `0` means
that the corresponding input ID is masked.
This has the same meaning as the `attention_mask` in HuggingFace's `transformers`
library.
:param attention_bias: A tensor of shape `(batch_size, 1, seq_len, seq_len)`,
`(1, 1, seq_len, seq_len)`, or `(seq_len, seq_len)`. This is used
to introduce causal or other biases.
If the tensor is a bool or byte tensor, a `True` or `1` at `attention_bias[:, :, i, j]`
indicates that the i-th element in the sequence is allowed to attend to the j-th
element in the sequence.
If the tensor is a float tensor, it will just be added to the attention
scores before the softmax.
The default is causal, which corresponds to a lower-diagonal byte matrix of ones.
:param response_mask: A tensor of shape `(batch_size, seq_len)` that indicates
the response mask. A `1` value in the mask means that the corresponding token
is a response token. A `0` means that the corresponding token is not
a response token.
:param past_key_values: Pre-computed keys and values for each attention block.
Can be used to speed up sequential decoding. The `input_ids` which have
their past given to this model should not be passed as `input_ids` as they have already been computed.
:param use_cache: If `True`, return key and value tensors for each block.
:param last_logits_only: If `True`, only compute the logits for the last token of each sequence.
This can speed up decoding when you only care about the next token.
"""
output_hidden_states = output_hidden_states if output_hidden_states is not None else False
if past_key_values:
assert len(past_key_values) == self.config.n_layers
has_image = images is not None
assert not (has_image and input_embeddings is not None), "Cannot provide both images and input embeddings."
assert not (has_image and past_key_values is not None), "Cached key and values should not be used with images."
batch_size, seq_len = input_ids.size() if input_embeddings is None else input_embeddings.size()[:2]
if past_key_values is None:
past_length = 0
else:
past_length = past_key_values[0][0].size(-2)
if self.config.use_position_ids and attention_mask is None:
attention_mask = input_ids != -1
if subsegment_ids is not None:
assert not use_cache, "Subsegment_ids cannot be used with cache."
subsegment_mask = subsegment_ids.unsqueeze(2) <= subsegment_ids.unsqueeze(1)
attention_mask = (
subsegment_mask.to(attention_mask.dtype) *
attention_mask.unsqueeze(2) *
attention_mask.unsqueeze(1))
if position_ids is None:
raise ValueError(f"Positioned ids must be given if using subsegment_ids")
else:
if self.config.use_position_ids and position_ids is None:
position_ids = torch.clamp(
torch.cumsum(attention_mask.to(torch.int32), dim=-1) - 1,
min=0,
).broadcast_to((batch_size, attention_mask.shape[-1]))
# Get embeddings of input.
# shape: (batch_size, seq_len, d_model)
if input_ids is not None:
input_ids = input_ids * (input_ids != -1).to(input_ids.dtype)
x = self.transformer.wte(input_ids) if input_embeddings is None else input_embeddings # type: ignore
num_image: Optional[int] = None
if images is not None:
# shape: (batch_size, num_image, num_patch, d_model)
# cls_embed: (batch_size, num_image, d_model)
image_features, cls_embed = self.vision_backbone(images, image_masks)
num_image, num_patch = image_features.shape[1:3]
assert image_input_idx.shape == (batch_size, num_image, num_patch)
# inster the image feature into the embedding.
image_features = image_features.view(batch_size, num_image * num_patch, -1)
image_input_idx = image_input_idx.view(batch_size, num_image * num_patch)
valid = image_input_idx >= 0
batch_idx = torch.arange(batch_size, device=x.device)
batch_idx = torch.tile(batch_idx[:, None], [1, image_features.shape[1]])
# For hf demo/endpoint
image_features = image_features.to(x.device)
x[batch_idx[valid], image_input_idx[valid]] += image_features[valid]
if self.config.use_cls_feature:
x = torch.cat([x[:, :1], cls_embed, x[:, 1:-num_image]], dim=1)
valid_images = torch.any(
(image_input_idx >= 0).view(batch_size, num_image, num_patch), dim=-1
)
valid_images = valid_images.to(attention_mask.dtype)
attention_mask = torch.cat(
[attention_mask[:, :1], valid_images, attention_mask[:, 1:-num_image]],
dim=1,
)
position_ids = torch.clamp(
torch.cumsum(attention_mask, dim=-1) - 1,
min=0,
).broadcast_to((batch_size, attention_mask.shape[-1]))
if not (self.config.alibi or self.config.rope):
# Get positional embeddings.
# shape: (1, seq_len)
pos = torch.arange(past_length, past_length + seq_len, dtype=torch.long, device=x.device).unsqueeze(0)
# shape: (1, seq_len, d_model)
pos_emb = self.transformer.wpe(pos) # type: ignore
x = pos_emb + x
# Add input + positional embeddings and apply dropout.
# shape: (batch_size, seq_len, d_model)
x = self.transformer.emb_drop(x) # type: ignore
# normalized
if self.config.normalize_input_embeds:
x = x * (self.config.d_model ** 0.5)
# Transform the attention mask into what the blocks expect.
if attention_mask is not None:
# shape: (batch_size, 1, 1, seq_len)
if len(attention_mask.shape) == 2:
attention_mask = attention_mask[:, :past_length + seq_len]
attention_mask = attention_mask.to(dtype=torch.float).view(batch_size, -1)[:, None, None, :]
else:
attention_mask = attention_mask.unsqueeze(1).to(dtype=torch.float)
attention_mask = (1.0 - attention_mask) * torch.finfo(attention_mask.dtype).min
# Merge attention mask with attention bias.
if (
attention_bias is not None
or attention_mask is not None
or self.config.alibi
# NOTE (epwalsh): we need to initialize the attn bias in order for attn to work properly
# with key+value cache. Otherwise `F.scaled_dot_product_attention()` doesn't seem to compute
# scores correctly.
or past_key_values is not None
):
if attention_bias is None and self.config.alibi:
attention_bias = get_causal_attention_bias(
self.__cache, past_length + seq_len, x.device
) + self.get_alibi_attention_bias(past_length + seq_len, x.device)
elif attention_bias is None:
attention_bias = get_causal_attention_bias(self.__cache, past_length + seq_len, x.device)
elif attention_bias.dtype in (torch.int8, torch.bool):
attention_bias = attention_bias.to(dtype=torch.float)
attention_bias.masked_fill_(attention_bias == 0.0, torch.finfo(attention_bias.dtype).min)
# Transform to the right shape and data type.
mask_len = seq_len
if attention_mask is not None:
mask_len = attention_mask.shape[-1]
elif past_key_values is not None:
mask_len = past_key_values[0][0].shape[-2] + seq_len
attention_bias = attention_bias[:, :, :mask_len, :mask_len].to(dtype=torch.float)
# Add in the masking bias.
if attention_mask is not None:
attention_bias = attention_bias + attention_mask
# Might get -infs after adding attention mask, since dtype.min + dtype.min = -inf.
# `F.scaled_dot_product_attention()` doesn't handle -inf like you'd expect, instead
# it can produce NaNs.
ensure_finite_(attention_bias, check_neg_inf=True, check_pos_inf=False)
attn_key_values: Optional[List[Tuple[torch.Tensor, torch.Tensor]]] = [] if use_cache else None
# decoder layers
all_hidden_states = []
# Apply blocks one-by-one.
if self.config.block_group_size == 1:
for block_idx, block in enumerate(self.transformer.blocks):
if output_hidden_states:
# add hidden states
all_hidden_states.append(x)
layer_past = None if past_key_values is None else past_key_values[block_idx]
x, cache = block(x, attention_bias=attention_bias, position_ids=position_ids, drop_mask=response_mask, layer_past=layer_past, use_cache=use_cache)
if attn_key_values is not None:
assert cache is not None
attn_key_values.append(cache)
else:
for group_idx, block_group in enumerate(self.transformer.block_groups):
if output_hidden_states:
# add hidden states
all_hidden_states.append(x)
layers_past = (
None
if past_key_values is None
else past_key_values[
group_idx * self.config.block_group_size : (group_idx + 1) * self.config.block_group_size
]
)
x, cache = block_group(
x, attention_bias=attention_bias, position_ids=position_ids, drop_mask=response_mask, layers_past=layers_past, use_cache=use_cache
)
if attn_key_values is not None:
assert cache is not None
attn_key_values.extend(cache)
if images is not None and self.config.use_cls_feature:
assert num_image is not None
x = torch.cat(
[x[:, :1], x[:, num_image+1:], torch.zeros_like(x[:, :num_image])],
dim=1,
)
if last_logits_only:
# shape: (batch_size, 1, d_model)
if append_last_valid_logits is not None:
last_valid_output = x[
torch.arange(x.shape[0], device=x.device), append_last_valid_logits.to(x.device)]
x = last_valid_output.unsqueeze(1)
else:
x = x[:, -1, :].unsqueeze(1)
# Apply final layer norm.
# shape: (batch_size, seq_len or 1, d_model)
x = self.transformer.ln_f(x) # type: ignore
if output_hidden_states:
# add final hidden state post-final-layernorm, following HuggingFace's convention
all_hidden_states.append(x)
# Get logits.
# shape: (batch_size, seq_len or 1, vocab_size)
if self.config.weight_tying:
logits = F.linear(x, self.transformer.wte.weight, None) # type: ignore
else:
logits = self.transformer.ff_out(x) # type: ignore
if self.config.scale_logits:
logits.mul_(1 / math.sqrt(self.config.d_model))
if not last_logits_only and append_last_valid_logits is not None:
last_valid_logit = logits[
torch.arange(logits.shape[0], device=logits.device), append_last_valid_logits]
logits = torch.cat([logits[:, :-1], last_valid_logit[:, None]], dim=1)
return ModelOutput(logits=logits, attn_key_values=attn_key_values, hidden_states=tuple(all_hidden_states) if output_hidden_states else None) # type: ignore[arg-type]
class MOLMoForCausalLM(PreTrainedModel):
config_class = MolmoConfig
base_model_prefix = "model"
_no_split_modules = ["OLMoBlock"]
def __init__(self, config: MolmoConfig, model: Optional[MOLMo] = None, init_params: bool = False):
super().__init__(config)
if not model:
full_config = FullMolmoConfig(
rope_impl="llama",
vocab_size=config.vocab_size,
max_sequence_length=config.max_position_embeddings,
qkv_bias=config.qkv_bias,
embedding_size=config.embedding_size,
attention_type="sdpa",
embedding_dropout=0,
response_residual_dropout=0,
attention_dropout=0,
residual_dropout=0,
rope=True,
weight_tying=False,
include_bias=False,
d_model=config.hidden_size,
mlp_hidden_size=config.intermediate_size,
n_layers=config.num_hidden_layers,
additional_vocab_size=128,
n_heads=config.num_attention_heads,
n_kv_heads=config.num_key_value_heads,
rope_theta=1000000.0,
layer_norm_eps=1e-6,
layer_norm_type="rms",
pad_tokenizer=True,
vit_layers=[-2, -9],
vision_backbone=VisionBackboneConfig(
image_model_type="openai",
image_default_input_size=(336, 336),
image_patch_size=14,
image_pos_patch_size=14,
image_emb_dim=1024,
image_num_heads=16,
image_num_key_value_heads=16,
image_num_layers=23,
image_head_dim=64,
image_mlp_dim=4096,
image_mlp_activations="quick_gelu",
image_dropout_rate=0.0,
image_num_pos=577,
image_norm_eps=1e-5,
attention_dropout=0.0,
residual_dropout=0.0,
initializer_range=0.02,
)
)
self.model = MOLMo(full_config, init_params=init_params)
else:
self.model = model
def forward(
self,
input_ids: torch.LongTensor = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
attention_mask: Optional[torch.Tensor] = None,
attention_bias: Optional[torch.Tensor] = None,
response_mask: Optional[torch.Tensor] = None,
images: Optional[torch.Tensor] = None,
image_masks: Optional[torch.Tensor] = None,
image_input_idx: Optional[torch.Tensor] = None,
subsegment_ids: Optional[torch.Tensor] = None,
position_ids: Optional[torch.Tensor] = None,
past_key_values: Optional[List[torch.FloatTensor]] = None,
labels: Optional[torch.LongTensor] = None,
loss_masks: Optional[torch.Tensor] = None,
use_cache: Optional[bool] = None,
last_logits_only: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
append_last_valid_logits: Optional[torch.Tensor] = None,
return_dict: Optional[bool] = None,
cache_position: Optional[
Cache
] = None, # This is a hack mitigation of an issue in transformers `4.39.x` https://github.com/huggingface/transformers/issues/29426
) -> Union[Tuple, CausalLMOutputWithPast]:
if use_cache is None:
use_cache = self.config.use_cache
if output_attentions:
raise ValueError("output_attentions is not yet supported in OLMo")
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
outputs = self.model.forward(
input_ids=input_ids,
input_embeddings=inputs_embeds,
attention_mask=attention_mask,
attention_bias=attention_bias,
response_mask=response_mask,
images=images,
image_masks=image_masks,
image_input_idx=image_input_idx,
subsegment_ids=subsegment_ids,
position_ids=position_ids,
past_key_values=past_key_values,
use_cache=use_cache,
last_logits_only=last_logits_only,
output_hidden_states=output_hidden_states,
append_last_valid_logits=append_last_valid_logits,
)
logits = outputs.logits
hidden_states = outputs.hidden_states
loss = None
if labels is not None:
if loss_masks is not None:
loss_masks = loss_masks * (loss_masks > 0)
batch_size_in_tokens = max(loss_masks.sum().item(), 1)
labels = labels.long()
labels.masked_fill_(~(loss_masks > 0), -100)
labels = labels.view(-1)
logits_for_loss = logits.to(torch.float32).view(-1, logits.size(-1))
loss_fct = torch.nn.CrossEntropyLoss(ignore_index=-100, reduction='none')
loss = loss_fct(logits_for_loss, labels)
loss = loss.view(input_ids.shape[0], -1)
loss = loss * loss_masks
loss = loss.sum() / batch_size_in_tokens
use_zloss = getattr(self.config, "softmax_auxiliary_loss", False)
if use_zloss:
z_squared = logits_for_loss.logsumexp(-1).pow(2)
z_loss = self.config.softmax_auxiliary_loss_scale * z_squared
z_loss = z_loss.view(input_ids.shape[0], -1)
z_loss = z_loss * loss_masks
z_loss = z_loss.sum() / batch_size_in_tokens
loss += z_loss
else:
# Shift so that tokens < n predict n
shift_logits = logits[..., :-1, :].contiguous()
shift_labels = labels[..., 1:].contiguous()
# Flatten the tokens
loss_fct = torch.nn.CrossEntropyLoss()
shift_logits = shift_logits.view(-1, self.config.embedding_size)
shift_labels = shift_labels.view(-1)
# Enable model parallelism
shift_labels = shift_labels.to(shift_logits.device)
loss = loss_fct(shift_logits, shift_labels)
if not return_dict:
output = (logits,) + outputs[1:]
return (loss,) + output if loss is not None else output
return CausalLMOutputWithPast(
loss=loss,
logits=logits,
past_key_values=outputs.attn_key_values,
hidden_states=hidden_states,
)
def can_generate(self) -> bool:
return True
@torch.no_grad()
def generate_from_batch(
self,
batch: Dict[str, Any],
generation_config: Optional[GenerationConfig] = None,
**kwargs,
):
if generation_config is not None:
assert generation_config.use_cache
images = batch.get("images")
image_masks = batch.get("image_masks")
image_input_idx = batch.get("image_input_idx")
# Validate inputs.
input_ids = batch["input_ids"]
batch_size, seq_len = input_ids.shape
attention_mask = batch.get("attention_mask", None)
max_new_tokens = generation_config.max_new_tokens
assert max_new_tokens is not None
mask_len = seq_len + max_new_tokens if self.config.use_position_ids else seq_len
position_ids: Optional[torch.Tensor] = None
append_last_valid_logits: Optional[torch.Tensor] = None
if self.config.use_position_ids and attention_mask is None:
attention_mask = input_ids != -1
position_ids = torch.clamp(
torch.cumsum(attention_mask.to(torch.int32), dim=-1) - 1,
min=0
)
append_last_valid_logits = attention_mask.long().sum(dim=-1) - 1
attention_mask = torch.cat(
[attention_mask, attention_mask.new_ones((batch_size, max_new_tokens))],
dim=1,
)
if attention_mask is not None:
assert attention_mask.shape == (batch_size, mask_len)
out = super().generate(
batch["input_ids"],
generation_config,
attention_mask=attention_mask,
images=images,
image_masks=image_masks,
image_input_idx=image_input_idx,
position_ids=position_ids,
append_last_valid_logits=append_last_valid_logits,
**kwargs,
)
return out
def prepare_inputs_for_generation(
self, input_ids: torch.LongTensor, past_key_values: Optional[List[Tuple]] = None, **kwargs
):
if past_key_values:
# This is because we want the model to only process the last generated token.
input_ids = input_ids[:, -1:]
if self.config.use_position_ids:
attention_mask = kwargs.get("attention_mask")
images = kwargs.get("images")
image_masks = kwargs.get("image_masks")
image_input_idx = kwargs.get("image_input_idx")
position_ids = kwargs.get("position_ids")
append_last_valid_logits = kwargs.get("append_last_valid_logits")
model_inputs = {
"input_ids": input_ids,
"attention_mask": attention_mask,
"position_ids": position_ids,
"past_key_values": past_key_values,
"use_cache": True,
"last_logits_only": True,
}
if past_key_values is None:
model_inputs["images"] = images
model_inputs["image_masks"] = image_masks
model_inputs["image_input_idx"] = image_input_idx
model_inputs["append_last_valid_logits"] = append_last_valid_logits
else:
model_inputs = {"input_ids": input_ids, "past_key_values": past_key_values}
model_inputs.update(kwargs)
model_inputs["use_cache"] = kwargs.pop("use_cache", self.config.use_cache)
return model_inputs
def _update_model_kwargs_for_generation(
self,
outputs: ModelOutput,
model_kwargs: Dict[str, Any],
is_encoder_decoder: bool = False,
standardize_cache_format: bool = False,
num_new_tokens: int = 1,
) -> Dict[str, Any]:
if self.config.use_position_ids:
model_kwargs["position_ids"] = model_kwargs["position_ids"][:, -1:] + 1
if "append_last_valid_logits" in model_kwargs:
del model_kwargs["append_last_valid_logits"]
if "images" in model_kwargs:
del model_kwargs["images"]
del model_kwargs["image_masks"]
del model_kwargs["image_input_idx"]
model_kwargs = super()._update_model_kwargs_for_generation(
outputs, model_kwargs, is_encoder_decoder, standardize_cache_format, num_new_tokens)
return model_kwargs
# TODO: these are required to make the implementation complete.
# def resize_position_embeddings(self, new_num_position_embeddings: int):
# pass
#
# def get_position_embeddings(self) -> Union[nn.Embedding, Tuple[nn.Embedding]]:
# pass
#
# def _reorder_cache(self, past_key_values, beam_idx):
# pass
def get_input_embeddings(self) -> torch.nn.Module:
return self.model.transformer.wte
def set_input_embeddings(self, value: torch.nn.Module):
self.model.transformer.wte = value
def get_output_embeddings(self):
if self.config.weight_tying:
return self.model.transformer.wte
else:
return self.model.transformer.ff_out
def set_output_embeddings(self, value: torch.nn.Module):
if self.config.weight_tying:
self.model.transformer.wte = value
else:
self.model.transformer.ff_out = value
def tie_weights(self):
"""
This function is intentionally left as a no-op.
Weight tying is handled as follows:
- When the model is initialized, the `ff_out` layer is conditionally defined based on the `weight_tying` configuration.
See: `if not config.weight_tying: self.transformer.update(...)` in `olmo/model.py`.
- When computing logits, the `wte` weights are used directly if `weight_tying` is enabled.
See: `if self.config.weight_tying: logits = F.linear(x, self.transformer.wte.weight, None)` in the `forward` method.
Therefore, there is no need to explicitly tie the weights in this function.
"""
pass
def resize_token_embeddings(
self, new_num_tokens: Optional[int] = None, pad_to_multiple_of: Optional[int] = None
) -> torch.nn.Embedding:
"""
Resizes input token embeddings matrix of the model if `new_num_tokens != config.embedding_size`.
Takes care of tying weights embeddings afterwards if the model class has a `tie_weights()` method.
Arguments:
new_num_tokens (`int`, *optional*):
The new number of tokens in the embedding matrix. Increasing the size will add newly initialized
vectors at the end. Reducing the size will remove vectors from the end. If not provided or `None`, just
returns a pointer to the input tokens `torch.nn.Embedding` module of the model without doing anything.
pad_to_multiple_of (`int`, *optional*):
If set will pad the embedding matrix to a multiple of the provided value. If `new_num_tokens` is set to
`None` will just pad the embedding to a multiple of `pad_to_multiple_of`.
This is especially useful to enable the use of Tensor Cores on NVIDIA hardware with compute capability
`>= 7.5` (Volta), or on TPUs which benefit from having sequence lengths be a multiple of 128. For more
details about this, or help on choosing the correct value for resizing, refer to this guide:
https://docs.nvidia.com/deeplearning/performance/dl-performance-matrix-multiplication/index.html#requirements-tc
Return:
`torch.nn.Embedding`: Pointer to the input tokens Embeddings Module of the model.
Note:
This method differs from the base class implementation by resizing the `embedding_size` attribute of the
model configuration instead of the `vocab_size`. It also includes a warning if the resized `embedding_size`
is less than the `vocab_size`. In OLMo, `embedding_size` refers to the dimensionality of the model's token
embeddings, while `vocab_size` refers to the number of unique tokens in the vocabulary.
"""
model_embeds = self._resize_token_embeddings(new_num_tokens, pad_to_multiple_of)
if new_num_tokens is None and pad_to_multiple_of is None:
return model_embeds
# Update base model and current model config
self.config.embedding_size = model_embeds.weight.shape[0]
self.model.config.embedding_size = model_embeds.weight.shape[0]
# Check if the embedding size is less than the vocab size
if self.config.embedding_size < self.config.vocab_size:
warning_message = (
f"Resizing token embeddings to size {self.config.embedding_size}, which is less than the vocab size "
f"{self.config.vocab_size} defined in the model configuration. Make sure your tokenizer's vocabulary "
"size is less than or equal to the new token embedding size."
)
log.warning(warning_message)
# Tie weights again if needed
self.tie_weights()
return model_embeds
# Always register for multi-modal features
AutoModelForCausalLM.register(MolmoConfig, MOLMoForCausalLM) |