File size: 2,085 Bytes
23d9b98 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 |
---
base_model: MediaTek-Research/Breeze-7B-Instruct-v1_0
library_name: peft
license: apache-2.0
tags:
- trl
- sft
- generated_from_trainer
model-index:
- name: ROE_Patent_Breeze7B_V1
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# ROE_Patent_Breeze7B_V1
This model is a fine-tuned version of [MediaTek-Research/Breeze-7B-Instruct-v1_0](https://huggingface.co/MediaTek-Research/Breeze-7B-Instruct-v1_0) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.7530
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 1
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 8
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: constant
- lr_scheduler_warmup_ratio: 0.03
- num_epochs: 11
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-------:|:----:|:---------------:|
| 0.9896 | 0.9697 | 12 | 0.9971 |
| 0.9038 | 1.9394 | 24 | 0.9124 |
| 0.812 | 2.9899 | 37 | 0.8596 |
| 0.8009 | 3.9596 | 49 | 0.8248 |
| 0.7401 | 4.9293 | 61 | 0.8017 |
| 0.6997 | 5.9798 | 74 | 0.7835 |
| 0.6831 | 6.9495 | 86 | 0.7715 |
| 0.656 | 8.0 | 99 | 0.7635 |
| 0.6389 | 8.9697 | 111 | 0.7558 |
| 0.6094 | 9.9394 | 123 | 0.7550 |
| 0.5967 | 10.6667 | 132 | 0.7530 |
### Framework versions
- PEFT 0.13.3.dev0
- Transformers 4.45.2
- Pytorch 2.4.1+cu121
- Datasets 3.0.1
- Tokenizers 0.20.1 |