|
--- |
|
language: pl |
|
--- |
|
|
|
# HerBERT tokenizer |
|
|
|
**[HerBERT](https://en.wikipedia.org/wiki/Zbigniew_Herbert)** tokenizer is a character level byte-pair encoding with |
|
vocabulary size of 50k tokens. The tokenizer was trained on [Wolne Lektury](https://wolnelektury.pl/) and a publicly available subset of |
|
[National Corpus of Polish](http://nkjp.pl/index.php?page=14&lang=0) with [fastBPE](https://github.com/glample/fastBPE) library. |
|
Tokenizer utilize `XLMTokenizer` implementation from [transformers](https://github.com/huggingface/transformers). |
|
|
|
## Tokenizer usage |
|
Herbert tokenizer should be used together with [HerBERT model](https://huggingface.co/allegro/herbert-klej-cased-v1): |
|
```python |
|
from transformers import XLMTokenizer, RobertaModel |
|
|
|
tokenizer = XLMTokenizer.from_pretrained("allegro/herbert-klej-cased-tokenizer-v1") |
|
model = RobertaModel.from_pretrained("allegro/herbert-klej-cased-v1") |
|
|
|
encoded_input = tokenizer.encode("Kto ma lepszą sztukę, ma lepszy rząd – to jasne.", return_tensors='pt') |
|
outputs = model(encoded_input) |
|
``` |
|
|
|
## License |
|
CC BY-SA 4.0 |
|
|
|
## Citation |
|
If you use this tokenizer, please cite the following paper: |
|
``` |
|
@inproceedings{rybak-etal-2020-klej, |
|
title = "{KLEJ}: Comprehensive Benchmark for {P}olish Language Understanding", |
|
author = "Rybak, Piotr and |
|
Mroczkowski, Robert and |
|
Tracz, Janusz and |
|
Gawlik, Ireneusz", |
|
booktitle = "Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics", |
|
month = jul, |
|
year = "2020", |
|
address = "Online", |
|
publisher = "Association for Computational Linguistics", |
|
url = "https://www.aclweb.org/anthology/2020.acl-main.111", |
|
doi = "10.18653/v1/2020.acl-main.111", |
|
pages = "1191--1201", |
|
} |
|
``` |
|
|
|
## Authors |
|
Tokenizer was created by **Allegro Machine Learning Research** team. |
|
|
|
You can contact us at: <a href="mailto:klejbenchmark@allegro.pl">klejbenchmark@allegro.pl</a> |
|
|