piotr-rybak's picture
Update README.md
22f03e7
---
language: pl
---
# HerBERT tokenizer
**[HerBERT](https://en.wikipedia.org/wiki/Zbigniew_Herbert)** tokenizer is a character level byte-pair encoding with
vocabulary size of 50k tokens. The tokenizer was trained on [Wolne Lektury](https://wolnelektury.pl/) and a publicly available subset of
[National Corpus of Polish](http://nkjp.pl/index.php?page=14&lang=0) with [fastBPE](https://github.com/glample/fastBPE) library.
Tokenizer utilize `XLMTokenizer` implementation from [transformers](https://github.com/huggingface/transformers).
## Tokenizer usage
Herbert tokenizer should be used together with [HerBERT model](https://huggingface.co/allegro/herbert-klej-cased-v1):
```python
from transformers import XLMTokenizer, RobertaModel
tokenizer = XLMTokenizer.from_pretrained("allegro/herbert-klej-cased-tokenizer-v1")
model = RobertaModel.from_pretrained("allegro/herbert-klej-cased-v1")
encoded_input = tokenizer.encode("Kto ma lepszą sztukę, ma lepszy rząd – to jasne.", return_tensors='pt')
outputs = model(encoded_input)
```
## License
CC BY-SA 4.0
## Citation
If you use this tokenizer, please cite the following paper:
```
@inproceedings{rybak-etal-2020-klej,
title = "{KLEJ}: Comprehensive Benchmark for {P}olish Language Understanding",
author = "Rybak, Piotr and
Mroczkowski, Robert and
Tracz, Janusz and
Gawlik, Ireneusz",
booktitle = "Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics",
month = jul,
year = "2020",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://www.aclweb.org/anthology/2020.acl-main.111",
doi = "10.18653/v1/2020.acl-main.111",
pages = "1191--1201",
}
```
## Authors
Tokenizer was created by **Allegro Machine Learning Research** team.
You can contact us at: <a href="mailto:klejbenchmark@allegro.pl">klejbenchmark@allegro.pl</a>