File size: 13,781 Bytes
afe9fcd
1
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n    Policy class for actor-critic algorithms (has both policy and value prediction).\n    Used by A2C, PPO and the likes.\n\n    :param observation_space: Observation space\n    :param action_space: Action space\n    :param lr_schedule: Learning rate schedule (could be constant)\n    :param net_arch: The specification of the policy and value networks.\n    :param activation_fn: Activation function\n    :param ortho_init: Whether to use or not orthogonal initialization\n    :param use_sde: Whether to use State Dependent Exploration or not\n    :param log_std_init: Initial value for the log standard deviation\n    :param full_std: Whether to use (n_features x n_actions) parameters\n        for the std instead of only (n_features,) when using gSDE\n    :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n        a positive standard deviation (cf paper). It allows to keep variance\n        above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n    :param squash_output: Whether to squash the output using a tanh function,\n        this allows to ensure boundaries when using gSDE.\n    :param features_extractor_class: Features extractor to use.\n    :param features_extractor_kwargs: Keyword arguments\n        to pass to the features extractor.\n    :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n    :param normalize_images: Whether to normalize images or not,\n         dividing by 255.0 (True by default)\n    :param optimizer_class: The optimizer to use,\n        ``th.optim.Adam`` by default\n    :param optimizer_kwargs: Additional keyword arguments,\n        excluding the learning rate, to pass to the optimizer\n    ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7c16cea8d120>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7c16cea8d1b0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7c16cea8d240>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7c16cea8d2d0>", "_build": "<function ActorCriticPolicy._build at 0x7c16cea8d360>", "forward": "<function ActorCriticPolicy.forward at 0x7c16cea8d3f0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7c16cea8d480>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7c16cea8d510>", "_predict": "<function ActorCriticPolicy._predict at 0x7c16cea8d5a0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7c16cea8d630>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7c16cea8d6c0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7c16cea8d750>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7c16cea3b880>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1717948411678785253, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAGYCPL1cj0y6MQYbtqELhbHTK/M6DV4tNQAAgD8AAIA/mrEmvI/vsT/Rszu+K7Vzvh2T8bsQQ9a9AAAAAAAAAAAAMoi99hwOuvLYeDnnfqE0aTOAunMOkLgAAIA/AACAP82igrxcq3i6JgOwNwTMTTKJnq66D33LtgAAgD8AAIA/88aWvcNJcLoOA2U70y3BN0SnVLrQFyq6AACAPwAAgD+azXc8FFyiulxZjLrnt5C1+DhJOg9ZoTkAAIA/AACAP5rtCT17UIy6W1tcuYQGQLSJjhm73guAOAAAgD8AAIA/zYbkvewBr7mKWIs7a9qcOMwTh7vg5Su6AACAPwAAAAAa4Dq9uLb1uSY877qDeRu2E9MqOSXwDjoAAIA/AACAP2bSm7xcp3C6HUwhun5oKLVcV/86Ack8OQAAgD8AAIA/MwCevOEihroEsIW5sPeOtDiMKTtOdZs4AACAPwAAgD+Geh6+39UtPwxqtDzWZpC+V6x0upttlDwAAAAAAAAAAGZmZTquzYW6xoi1O54IWjfIw3Q6xzJHNgAAgD8AAIA/za5VveH4iLoyoIy5Gh8FszinZroJVaE4AACAPwAAgD+aqW47rtmsusAa5rftr8OyhdUEOpHQAzcAAIA/AACAP83xa72bFrA/ckm4vo4rlb6AuKi9Ids7vgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVPQwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQGVT9zwMH8mMAWyUTegDjAF0lEdAlUIVv2oNu3V9lChoBkdAZMNdDYywfWgHTegDaAhHQJVGY/KQq7R1fZQoaAZHQGYrv0I1LrZoB03oA2gIR0CVRn7/n4fwdX2UKGgGR0BhrgUpNKywaAdN6ANoCEdAlUoiyMUAUHV9lChoBkdAYANMCcPOIWgHTegDaAhHQJVLgdbPhQ51fZQoaAZHQGahiK77Kq5oB03oA2gIR0CVT9F+d9UkdX2UKGgGR0BlWxGKAJ9iaAdN6ANoCEdAlVapbdJrcnV9lChoBkdAYKBaQFLWZ2gHTegDaAhHQJVgbdweeWh1fZQoaAZHQGGMxlQMx49oB03oA2gIR0CVZIa24NI9dX2UKGgGR0BfZwgX/HYIaAdN6ANoCEdAlWTAoTfzjHV9lChoBkdAZy0Z0CA+ZGgHTegDaAhHQJWDHt1IRRN1fZQoaAZHQGJIGpEQXhxoB03oA2gIR0CVhdOO801qdX2UKGgGR0Bo+Kt7rs0IaAdN6ANoCEdAlYZCF9KEnXV9lChoBkdAY6b/Nqxkd2gHTegDaAhHQJWHgRXfZVZ1fZQoaAZHQGUVg3DNyHVoB03oA2gIR0CViAIwM6RydX2UKGgGR0Bfu4PsiSq3aAdN6ANoCEdAlYj5QHiWFHV9lChoBkdAY3WBfa6BiGgHTegDaAhHQJWMGngpBop1fZQoaAZHQGhaYnndO7BoB03oA2gIR0CVkCdN34bkdX2UKGgGR0Bhll+d9UjtaAdN6ANoCEdAlZBEiQkonnV9lChoBkdAaJq1dgOSXGgHTegDaAhHQJWTrxkNF0B1fZQoaAZHQGXVrPUrkKhoB03oA2gIR0CVlPQOFxn4dX2UKGgGR0Bb1G+49X9zaAdN6ANoCEdAlZjtKAavR3V9lChoBkdAZO0CPp6hQGgHTegDaAhHQJWf7ZElVtJ1fZQoaAZHQGIIlvIfbK1oB03oA2gIR0CVrAkYXO4YdX2UKGgGR0Bj3nFWGRFJaAdN6ANoCEdAlbAeLR8c/HV9lChoBkdAZhkN0/4ZdmgHTegDaAhHQJWwWfg75mB1fZQoaAZHQGa5fAsTWXloB03oA2gIR0CVunQkHD77dX2UKGgGR0BiJK04R28qaAdN6ANoCEdAlc6tGViWmnV9lChoBkdAZaJ8+iaiK2gHTegDaAhHQJXPHRgJC0F1fZQoaAZHQGgGRx1gYxdoB03oA2gIR0CV0HI6Kcd6dX2UKGgGR0Bm99zr/sE8aAdN6ANoCEdAldDwXAM2FXV9lChoBkdAaHJMwDeTFGgHTegDaAhHQJXSOvzOHFh1fZQoaAZHQGgqNLteD4BoB03oA2gIR0CV1rpnYg7pdX2UKGgGR0Bj+6AH3UQTaAdN6ANoCEdAld0KVD8cdnV9lChoBkdAZJGtMfzSTmgHTegDaAhHQJXdNvfj0cx1fZQoaAZHQGbE6naWX1JoB03oA2gIR0CV4WV3ljmTdX2UKGgGR0BigPS2H+IeaAdN6ANoCEdAleLTziCJ43V9lChoBkdAUAEVN5+pfmgHS+FoCEdAleSj6rNnoXV9lChoBkdAYnmrgflp5GgHTegDaAhHQJXnON0eU6h1fZQoaAZHQGYUxbbDdgxoB03oA2gIR0CV7eTj/+85dX2UKGgGR0BfJ+Idlum8aAdN6ANoCEdAlfeUMw1zhnV9lChoBkdAYg6m8/UvwmgHTegDaAhHQJX7mLiuMdd1fZQoaAZHQGOEU+9rXUZoB03oA2gIR0CV+9EYfnwHdX2UKGgGR0BlpnGCI1tPaAdN6ANoCEdAlgVCwOe8PHV9lChoBkdAYQJXA/LTyGgHTegDaAhHQJYcWIhyKel1fZQoaAZHQFuocFQl8gJoB03oA2gIR0CWHMPKdQO4dX2UKGgGR0BcAgN0/4ZdaAdN6ANoCEdAlh4NfG+9J3V9lChoBkdAYX5Rb8m8d2gHTegDaAhHQJYeivPkaMt1fZQoaAZHQGU3GXPZ7HBoB03oA2gIR0CWH5V6eGwidX2UKGgGR0BdykrTYukDaAdN6ANoCEdAlieo8Md92HV9lChoBkdAX/cUCaJAMWgHTegDaAhHQJYnxSvTw2F1fZQoaAZHQGRPor4Fia1oB03oA2gIR0CWK2JAdGRWdX2UKGgGR0BlEiCQLeANaAdN6ANoCEdAliyzCDVYp3V9lChoBkdAYohfEXLvC2gHTegDaAhHQJYuVT72tdR1fZQoaAZHQGLc3XAdn01oB03oA2gIR0CWMJxVyWAxdX2UKGgGR0BnWAW8AaNuaAdN6ANoCEdAljaLKmsNlXV9lChoBkdAYjX1YhdMTWgHTegDaAhHQJZA9IjGDL91fZQoaAZHQGGDXVTaTOhoB03oA2gIR0CWRdiEQGwBdX2UKGgGR0Blnx4MWoFWaAdN6ANoCEdAlkYNP+GXX3V9lChoBkdAZE1rAP/aQGgHTegDaAhHQJZPBxZMcp91fZQoaAZHQGY5v5YYBNpoB03oA2gIR0CWYtdz4k/sdX2UKGgGR0BhD+GsV+I/aAdN6ANoCEdAlmNK5byH23V9lChoBkdAZDc6gdwNsmgHTegDaAhHQJZkhN0vGqB1fZQoaAZHQGPjWa2F36hoB03oA2gIR0CWZP8baRISdX2UKGgGR0BlqkwQDmr9aAdN6ANoCEdAlmX65kK/mHV9lChoBkdAZAosJ6Y3N2gHTegDaAhHQJZtLfdhy811fZQoaAZHQGVWeM6zVtpoB03oA2gIR0CWbUoiLVFydX2UKGgGR0Bnv5d6cAinaAdN6ANoCEdAlnIOPJaJRHV9lChoBkdAZE7qGDcuamgHTegDaAhHQJZz61Vo6CF1fZQoaAZHQGR/feLvTgFoB03oA2gIR0CWdk86V+qjdX2UKGgGR0BmYkk2P1cuaAdN6ANoCEdAlnlKUA1ejXV9lChoBkdASQbel9BrvmgHS85oCEdAlnp0PH1e0HV9lChoBkdAQ3xM6BAfMmgHS+FoCEdAlntALqlgt3V9lChoBkdARumnuRcNY2gHS8hoCEdAln7ruMMqjXV9lChoBkdAZ/h2bobGWGgHTegDaAhHQJZ/P/S6UaB1fZQoaAZHQGQorhrFfiRoB03oA2gIR0CWh7vCuU2UdX2UKGgGR0BmtR6a9bosaAdN6ANoCEdAlou0i6g/T3V9lChoBkdAYvHfZVXFLmgHTegDaAhHQJaL7qzJIUd1fZQoaAZHQGLPzoEB8x9oB03oA2gIR0CWlgxptaZAdX2UKGgGR0BgvZBRhttRaAdN6ANoCEdAlpkGC2+fy3V9lChoBkdAaIt2W6bvw2gHTegDaAhHQJaZeXiR4hV1fZQoaAZHQGQnGTC+De1oB03oA2gIR0CWrzyy2QXAdX2UKGgGR0BlAl3OfNA1aAdN6ANoCEdAlq/ENayKN3V9lChoBkdAY/shTOxB3WgHTegDaAhHQJaw3H1e0HB1fZQoaAZHQEAsTlDF6zFoB0vMaAhHQJa4FuZThpB1fZQoaAZHQEWwUoKD019oB0vgaAhHQJa5wKRdQfp1fZQoaAZHQGFSKB/ZuhtoB03oA2gIR0CWvXN/vv0AdX2UKGgGR0Bk4WfdyksSaAdN6ANoCEdAlsDRzBAOa3V9lChoBkdAZe5BZ6lchWgHTegDaAhHQJbDiuTzNEB1fZQoaAZHQGEcA3Lmp2loB03oA2gIR0CWxN+HrQgLdX2UKGgGR0BEvVSGahHtaAdL1mgIR0CWxZ9OARTTdX2UKGgGR0BhlYiqyWzGaAdN6ANoCEdAlsXGS+xnnXV9lChoBkdAYghtk4FRpGgHTegDaAhHQJbJXIikftB1fZQoaAZHQGJDBxxT851oB03oA2gIR0CWybdYGMXKdX2UKGgGR0Bku26shgVoaAdN6ANoCEdAltGOivgWJ3V9lChoBkdAXNZeZ5Rj0GgHTegDaAhHQJbV5RoAXEZ1fZQoaAZHQGECqFh5PdloB03oA2gIR0CW1jF/hESedX2UKGgGR0BiHN23azu4aAdN6ANoCEdAluKoQBgeBHV9lChoBkdAZ+Vmg8KXwGgHTegDaAhHQJbnUfRu0kZ1fZQoaAZHQGMK8ZccENhoB03oA2gIR0CW598pkPMCdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True  True  True  True  True  True  True  True]", "bounded_above": "[ True  True  True  True  True  True  True  True]", "_shape": [8], "low": "[-90.        -90.         -5.         -5.         -3.1415927  -5.\n  -0.         -0.       ]", "high": "[90.        90.         5.         5.         3.1415927  5.\n  1.         1.       ]", "low_repr": "[-90.        -90.         -5.         -5.         -3.1415927  -5.\n  -0.         -0.       ]", "high_repr": "[90.        90.         5.         5.         3.1415927  5.\n  1.         1.       ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sun Apr 28 14:29:16 UTC 2024", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.3.0+cu121", "GPU Enabled": "True", "Numpy": "1.25.2", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}