File size: 2,030 Bytes
97cf306
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
---
license: apache-2.0
base_model: facebook/wav2vec2-base
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: IDAT_red_aug_998_Wav2Vec
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# IDAT_red_aug_998_Wav2Vec

This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2033
- Accuracy: 0.956

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 10

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 0.6465        | 1.0   | 109  | 0.6712          | 0.62     |
| 0.4621        | 2.0   | 219  | 0.5122          | 0.82     |
| 0.4964        | 3.0   | 328  | 0.4697          | 0.788    |
| 0.4637        | 4.0   | 438  | 0.4764          | 0.804    |
| 0.3919        | 5.0   | 547  | 0.3494          | 0.852    |
| 0.2591        | 6.0   | 657  | 0.2926          | 0.904    |
| 0.4556        | 7.0   | 766  | 0.1674          | 0.952    |
| 0.2571        | 8.0   | 876  | 0.1193          | 0.972    |
| 0.067         | 9.0   | 985  | 0.0794          | 0.98     |
| 0.0186        | 9.95  | 1090 | 0.2033          | 0.956    |


### Framework versions

- Transformers 4.32.1
- Pytorch 2.1.2
- Datasets 2.16.1
- Tokenizers 0.13.3