File size: 14,777 Bytes
5808f66
 
 
 
 
 
903b9b3
 
 
 
 
 
 
 
 
 
 
5808f66
903b9b3
5808f66
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c397570
 
5808f66
 
 
c397570
5808f66
 
 
 
 
 
 
 
c397570
5808f66
 
 
 
 
 
 
 
 
c397570
5808f66
 
c397570
5808f66
 
 
 
 
c397570
5808f66
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
{
    "policy_class": {
        ":type:": "<class 'abc.ABCMeta'>",
        ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
        "__module__": "stable_baselines3.common.policies",
        "__doc__": "\n    Policy class for actor-critic algorithms (has both policy and value prediction).\n    Used by A2C, PPO and the likes.\n\n    :param observation_space: Observation space\n    :param action_space: Action space\n    :param lr_schedule: Learning rate schedule (could be constant)\n    :param net_arch: The specification of the policy and value networks.\n    :param activation_fn: Activation function\n    :param ortho_init: Whether to use or not orthogonal initialization\n    :param use_sde: Whether to use State Dependent Exploration or not\n    :param log_std_init: Initial value for the log standard deviation\n    :param full_std: Whether to use (n_features x n_actions) parameters\n        for the std instead of only (n_features,) when using gSDE\n    :param sde_net_arch: Network architecture for extracting features\n        when using gSDE. If None, the latent features from the policy will be used.\n        Pass an empty list to use the states as features.\n    :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n        a positive standard deviation (cf paper). It allows to keep variance\n        above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n    :param squash_output: Whether to squash the output using a tanh function,\n        this allows to ensure boundaries when using gSDE.\n    :param features_extractor_class: Features extractor to use.\n    :param features_extractor_kwargs: Keyword arguments\n        to pass to the features extractor.\n    :param normalize_images: Whether to normalize images or not,\n         dividing by 255.0 (True by default)\n    :param optimizer_class: The optimizer to use,\n        ``th.optim.Adam`` by default\n    :param optimizer_kwargs: Additional keyword arguments,\n        excluding the learning rate, to pass to the optimizer\n    ",
        "__init__": "<function ActorCriticPolicy.__init__ at 0x7f2590ef2a60>",
        "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f2590ef2af0>",
        "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f2590ef2b80>",
        "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f2590ef2c10>",
        "_build": "<function ActorCriticPolicy._build at 0x7f2590ef2ca0>",
        "forward": "<function ActorCriticPolicy.forward at 0x7f2590ef2d30>",
        "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f2590ef2dc0>",
        "_predict": "<function ActorCriticPolicy._predict at 0x7f2590ef2e50>",
        "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f2590ef2ee0>",
        "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f2590ef2f70>",
        "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f2590eef040>",
        "__abstractmethods__": "frozenset()",
        "_abc_impl": "<_abc_data object at 0x7f2590ee7990>"
    },
    "verbose": 1,
    "policy_kwargs": {},
    "observation_space": {
        ":type:": "<class 'gym.spaces.box.Box'>",
        ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
        "dtype": "float32",
        "_shape": [
            8
        ],
        "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
        "high": "[inf inf inf inf inf inf inf inf]",
        "bounded_below": "[False False False False False False False False]",
        "bounded_above": "[False False False False False False False False]",
        "_np_random": null
    },
    "action_space": {
        ":type:": "<class 'gym.spaces.discrete.Discrete'>",
        ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
        "n": 4,
        "_shape": [],
        "dtype": "int64",
        "_np_random": null
    },
    "n_envs": 16,
    "num_timesteps": 1015808,
    "_total_timesteps": 1000000,
    "_num_timesteps_at_start": 0,
    "seed": null,
    "action_noise": null,
    "start_time": 1652344085.6019447,
    "learning_rate": 0.0003,
    "tensorboard_log": null,
    "lr_schedule": {
        ":type:": "<class 'function'>",
        ":serialized:": "gAWV2QIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjFQvaG9tZS9kb2NrZXJfcmwvLmxvY2FsL2xpYi9weXRob24zLjgvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjFQvaG9tZS9kb2NrZXJfcmwvLmxvY2FsL2xpYi9weXRob24zLjgvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoIH2UfZQoaBdoDowMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBiMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHPzOpKjBVMmGFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
    },
    "_last_obs": {
        ":type:": "<class 'numpy.ndarray'>",
        ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAABIsLyfTd8831GHvasAb75YMGc8SrsCvQAAAAAAAAAApqS+vfb8QrrNeAk8T7/YtshPvLqtws61AAAAAAAAAACzdO69QvT5PnJPALuT+HO+TEEpvd4n0TsAAAAAAAAAADO6QD1sdpQ8BEeuPK7FTL78xt48bxMOPQAAAAAAAAAArWElvrMhMD8mHaw7So+uvgdXSb1JvJ89AAAAAAAAAACz85e9KYBmunPkb7qJADK27b12Og6jizkAAIA/AACAP8082LpIh4G6/ijZNUS1YjAqUQU61qjztAAAgD8AAIA/Znv+vQIPFT6OsPm8YwOSvgkrMbuRVIm9AAAAAAAAAACz9oc90KKUP4YqQj63mvS+lOG0PXjaNDwAAAAAAAAAABoCer0pyge8qxP7PLL1Jz038mS9+RkIPgAAgD8AAIA/QOUQvtP4Pj8FIw090TmnvhCWkL31E3o9AAAAAAAAAABmot49EpIIPxpP7b3WQba+fZXCPHX4HL0AAAAAAAAAAGaRlL0Kg1M8ZfMtvszCLr6BwL+8yda2PQAAAAAAAAAAs7GEveFYibpIaV02zwMxMU23hjmvKoS1AACAPwAAgD9m3oW7D84sPykLIb07rp6+l5urPHOO3bwAAAAAAAAAAK30n761OXo/mTArvs65z75/MV6+VkL8PQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
    },
    "_last_episode_starts": {
        ":type:": "<class 'numpy.ndarray'>",
        ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
    },
    "_last_original_obs": null,
    "_episode_num": 0,
    "use_sde": false,
    "sde_sample_freq": -1,
    "_current_progress_remaining": -0.015808000000000044,
    "ep_info_buffer": {
        ":type:": "<class 'collections.deque'>",
        ":serialized:": "gAWVdBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBg39E5xUcUCUhpRSlIwBbJRNGAGMAXSUR0CFSOfVZs9CdX2UKGgGaAloD0MIj+BGylYccECUhpRSlGgVTVgBaBZHQIVI/1vl2eR1fZQoaAZoCWgPQwi6g9iZQqRuQJSGlFKUaBVNBwFoFkdAhUmKqOtGNXV9lChoBmgJaA9DCDz2s1iKVVVAlIaUUpRoFU3oA2gWR0CFSZZ0Syt3dX2UKGgGaAloD0MI+dozS0K4cUCUhpRSlGgVTS4BaBZHQIVJz1uivgZ1fZQoaAZoCWgPQwhRTUnWIVpwQJSGlFKUaBVL8GgWR0CFSe150KZ2dX2UKGgGaAloD0MI626e6hB3cUCUhpRSlGgVTToBaBZHQIVKSSDAaeh1fZQoaAZoCWgPQwi1jNR7KlpxQJSGlFKUaBVNMQFoFkdAhUvp2ll9SnV9lChoBmgJaA9DCG/2B8otI3JAlIaUUpRoFU1QAWgWR0CFTCGnGbTddX2UKGgGaAloD0MIAkcCDTZtbUCUhpRSlGgVTRwBaBZHQIVMNII4VAR1fZQoaAZoCWgPQwgSoKaWrUBxQJSGlFKUaBVNEQFoFkdAhUyQzk6tDHV9lChoBmgJaA9DCEFEatrFaG5AlIaUUpRoFU0AAWgWR0CFTVJjlPrOdX2UKGgGaAloD0MIVMiVehYLcECUhpRSlGgVTSoBaBZHQIVNfh/Aj6h1fZQoaAZoCWgPQwjD1QEQ9/5xQJSGlFKUaBVNEgFoFkdAhU2NIsiB5HV9lChoBmgJaA9DCIRFRZxOikNAlIaUUpRoFUvjaBZHQIVO4Hoouwp1fZQoaAZoCWgPQwgnMnOBC6VxQJSGlFKUaBVNEwFoFkdAhU95of0VanV9lChoBmgJaA9DCPHYz2LphXBAlIaUUpRoFU0LAWgWR0CFT+sfaHsUdX2UKGgGaAloD0MI8RExJVLlcUCUhpRSlGgVTQgBaBZHQIVQe8Zk0791fZQoaAZoCWgPQwjRsYNKHANxQJSGlFKUaBVNNQFoFkdAhVEXJ5mh/XV9lChoBmgJaA9DCKKXUSw3Vm9AlIaUUpRoFU0FAWgWR0CFUTNY8uBddX2UKGgGaAloD0MIERssnGRicECUhpRSlGgVTRcBaBZHQIVRRlpXZGt1fZQoaAZoCWgPQwj4xaUqbYNOQJSGlFKUaBVL1WgWR0CFUbzPrv9cdX2UKGgGaAloD0MIBi/6CtL2b0CUhpRSlGgVTUgBaBZHQIVSMCcPOIJ1fZQoaAZoCWgPQwgwuOaO/mFuQJSGlFKUaBVNDgFoFkdAhVMKLKmsNnV9lChoBmgJaA9DCAUx0LVvmHBAlIaUUpRoFU1iAWgWR0CFUx60pmVadX2UKGgGaAloD0MIW5avy/DocECUhpRSlGgVTUEBaBZHQIVUmuA7Ppp1fZQoaAZoCWgPQwhEwCFUKdpxQJSGlFKUaBVNPQFoFkdAhVTkfT1CgXV9lChoBmgJaA9DCLFOle9ZqnFAlIaUUpRoFU0eAWgWR0CFVQ3G4qgAdX2UKGgGaAloD0MIPIidKTQRckCUhpRSlGgVTSMBaBZHQIVVPkLhJiB1fZQoaAZoCWgPQwhB176AHhFxQJSGlFKUaBVNMgFoFkdAhVVlUyYXwnV9lChoBmgJaA9DCJbrbTNVSnJAlIaUUpRoFU0mAWgWR0CFV2oS+QEIdX2UKGgGaAloD0MI323eOKlgb0CUhpRSlGgVTUQBaBZHQIVXszuWrwR1fZQoaAZoCWgPQwhOtRZmoY9uQJSGlFKUaBVL/mgWR0CFV/eD3/PxdX2UKGgGaAloD0MIVkW4yejdcECUhpRSlGgVTTABaBZHQIVYOYx+KCR1fZQoaAZoCWgPQwjfUWNCDGJxQJSGlFKUaBVNHQFoFkdAhVhDTrmhd3V9lChoBmgJaA9DCCRgdHlzo29AlIaUUpRoFUv9aBZHQIVYms90Rvp1fZQoaAZoCWgPQwh/3lSkQhxxQJSGlFKUaBVNHAFoFkdAhVjYtQKrrHV9lChoBmgJaA9DCMbf9gQJgW9AlIaUUpRoFU0tAWgWR0CFWVV9Wp6ydX2UKGgGaAloD0MIXKyowbRjcUCUhpRSlGgVTTUBaBZHQIVacIZ62OR1fZQoaAZoCWgPQwg2rn/X5/NxQJSGlFKUaBVNNwFoFkdAhVtn1FpfyHV9lChoBmgJaA9DCBYyVwYVmHBAlIaUUpRoFU1FAWgWR0CFW+VCXyAhdX2UKGgGaAloD0MIZLDiVGugcECUhpRSlGgVTQwBaBZHQIVcOcJ+lTF1fZQoaAZoCWgPQwhL5e0IJ51sQJSGlFKUaBVNAAFoFkdAhVxuJtSAH3V9lChoBmgJaA9DCF+VC5W/nXBAlIaUUpRoFU0OAWgWR0CFXKNdZ7ojdX2UKGgGaAloD0MI4biMm1pFcUCUhpRSlGgVTTIBaBZHQIVwVn7Hhjx1fZQoaAZoCWgPQwhUHAdeLRJvQJSGlFKUaBVL8mgWR0CFcZ7zkIX1dX2UKGgGaAloD0MIQGzp0VTAbUCUhpRSlGgVTVoBaBZHQIVx7Axi5NJ1fZQoaAZoCWgPQwju7CsP0kJwQJSGlFKUaBVNIQFoFkdAhXK8Hv+fiHV9lChoBmgJaA9DCBxdpburinNAlIaUUpRoFU03AWgWR0CFc/7laKUFdX2UKGgGaAloD0MIQrEVNK3UbkCUhpRSlGgVTSIBaBZHQIV0FCkXUH91fZQoaAZoCWgPQwjf/lw0ZLNwQJSGlFKUaBVNOAFoFkdAhXRVivxH5XV9lChoBmgJaA9DCN2x2CaVwnBAlIaUUpRoFU07AWgWR0CFdGOjqOcUdX2UKGgGaAloD0MImyFVFO95c0CUhpRSlGgVTTMBaBZHQIV02DjBEa51fZQoaAZoCWgPQwhs7X2qirJuQJSGlFKUaBVNJgFoFkdAhXUFnIyTIXV9lChoBmgJaA9DCK9bBMb6OEZAlIaUUpRoFUvIaBZHQIV1t8qnWJ91fZQoaAZoCWgPQwhqMA3Dx4dvQJSGlFKUaBVL+GgWR0CFddMFlkH2dX2UKGgGaAloD0MIlnZqLreBbUCUhpRSlGgVTUwBaBZHQIV3KqdYnv51fZQoaAZoCWgPQwgTRN0H4FlwQJSGlFKUaBVNGwFoFkdAhXc/20zCUHV9lChoBmgJaA9DCBV0e0njMXNAlIaUUpRoFU0MAWgWR0CFd1ztCzC2dX2UKGgGaAloD0MICp5CrlSAbkCUhpRSlGgVTSEBaBZHQIV3r3sXzlN1fZQoaAZoCWgPQwgq/u+ICoJvQJSGlFKUaBVL7mgWR0CFeDyPMjeLdX2UKGgGaAloD0MIzk9xHPgVckCUhpRSlGgVTSQBaBZHQIV4aFbmlqJ1fZQoaAZoCWgPQwh4COOnsbZxQJSGlFKUaBVNIQFoFkdAhXnI5o4+83V9lChoBmgJaA9DCAb1LXP62XFAlIaUUpRoFU0lAWgWR0CFertwaR6odX2UKGgGaAloD0MIV8wIb8/icUCUhpRSlGgVTQABaBZHQIV7IbGWD6F1fZQoaAZoCWgPQwj8q8d9K4dxQJSGlFKUaBVNAgFoFkdAhXv7/ffoBHV9lChoBmgJaA9DCBV0e0mjTHJAlIaUUpRoFU0nAWgWR0CFfBXdTHbRdX2UKGgGaAloD0MIICkiw6rkckCUhpRSlGgVTRoBaBZHQIV8iaNMoMN1fZQoaAZoCWgPQwjFOH8TimBxQJSGlFKUaBVNPAFoFkdAhX0SbH6uXHV9lChoBmgJaA9DCA5JLZSM2XJAlIaUUpRoFU0IAWgWR0CFfS4HX2/SdX2UKGgGaAloD0MIgv+tZMeHcUCUhpRSlGgVTWkBaBZHQIV+EF0PpY91fZQoaAZoCWgPQwjpgCTsG9VwQJSGlFKUaBVNKwFoFkdAhX4hOP/7znV9lChoBmgJaA9DCAso1NMHAHNAlIaUUpRoFU0EAWgWR0CFfpSMtK7JdX2UKGgGaAloD0MIrfawF4oPcUCUhpRSlGgVTQUBaBZHQIV+tx2jfvZ1fZQoaAZoCWgPQwgvaverwOdyQJSGlFKUaBVNFAFoFkdAhX7nxJ/XoXV9lChoBmgJaA9DCOjAcoSMq3BAlIaUUpRoFU0eAWgWR0CFf55mh/RWdX2UKGgGaAloD0MIXp1jQHa+b0CUhpRSlGgVTQcBaBZHQIV/zFuNxVB1fZQoaAZoCWgPQwgqxY7Gof1tQJSGlFKUaBVNGAFoFkdAhYAHJT2nKnV9lChoBmgJaA9DCMjtl09W0HFAlIaUUpRoFU0TAWgWR0CFgWXk5p8GdX2UKGgGaAloD0MIDw9h/PS0ckCUhpRSlGgVTQIBaBZHQIWCMUTL4et1fZQoaAZoCWgPQwiGjbJ+M/pSQJSGlFKUaBVNAAFoFkdAhYL8zAN5MXV9lChoBmgJaA9DCJZZhGJrCHBAlIaUUpRoFU0GAWgWR0CFg0TvAoG6dX2UKGgGaAloD0MIvw6cM6JoN0CUhpRSlGgVS+ZoFkdAhYM/2K2rn3V9lChoBmgJaA9DCC3SxDsAUnBAlIaUUpRoFU00AWgWR0CFg1bnoxHodX2UKGgGaAloD0MIaCWt+MZ2cUCUhpRSlGgVTQwBaBZHQIWDzMgU1yh1fZQoaAZoCWgPQwhQU8vW+tpFQJSGlFKUaBVL2GgWR0CFhDJOFg2IdX2UKGgGaAloD0MI6QyMvCyBckCUhpRSlGgVTSIBaBZHQIWE22CuloF1fZQoaAZoCWgPQwjr5XeazJ1xQJSGlFKUaBVNKgFoFkdAhYX1iF0xM3V9lChoBmgJaA9DCFCNl24SYHBAlIaUUpRoFU0+AWgWR0CFhn9ph4MXdX2UKGgGaAloD0MIOZ1kq0tockCUhpRSlGgVTRQBaBZHQIWHIEhaC+V1fZQoaAZoCWgPQwh2jZYDPe5xQJSGlFKUaBVNNwFoFkdAhYdDQiRnvnV9lChoBmgJaA9DCMizy7e+b2xAlIaUUpRoFU0MAWgWR0CFh2MNMGordX2UKGgGaAloD0MIehubHel+cUCUhpRSlGgVTSYBaBZHQIWH1NpM6BB1fZQoaAZoCWgPQwjTLxFvnW5wQJSGlFKUaBVL7GgWR0CFiaOZLIxQdX2UKGgGaAloD0MIsOWV6213TkCUhpRSlGgVS+JoFkdAhYmvybx3FHV9lChoBmgJaA9DCIrJG2AmZXBAlIaUUpRoFU0lAWgWR0CFicBlMAWBdX2UKGgGaAloD0MIKjkn9tArbUCUhpRSlGgVTQwBaBZHQIWJ1Nzr/sF1fZQoaAZoCWgPQwghBrr2BdtrQJSGlFKUaBVNqwFoFkdAhYpRu0kWynV9lChoBmgJaA9DCNI1k2+24XFAlIaUUpRoFU0MAWgWR0CFiqR0U47zdX2UKGgGaAloD0MISRRa1n0lckCUhpRSlGgVTQ0BaBZHQIWLlyPuG9J1ZS4="
    },
    "ep_success_buffer": {
        ":type:": "<class 'collections.deque'>",
        ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
    },
    "_n_updates": 276,
    "n_steps": 1024,
    "gamma": 0.999,
    "gae_lambda": 0.98,
    "ent_coef": 0.01,
    "vf_coef": 0.5,
    "max_grad_norm": 0.5,
    "batch_size": 64,
    "n_epochs": 4,
    "clip_range": {
        ":type:": "<class 'function'>",
        ":serialized:": "gAWV2QIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjFQvaG9tZS9kb2NrZXJfcmwvLmxvY2FsL2xpYi9weXRob24zLjgvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjFQvaG9tZS9kb2NrZXJfcmwvLmxvY2FsL2xpYi9weXRob24zLjgvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoIH2UfZQoaBdoDowMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBiMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP8mZmZmZmZqFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
    },
    "clip_range_vf": null,
    "normalize_advantage": true,
    "target_kl": null
}