File size: 2,356 Bytes
077ae6e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 |
---
license: cc-by-nc-4.0
base_model: MCG-NJU/videomae-base
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: videomae-base-finetuned-good-gesturePhaseV1
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# videomae-base-finetuned-good-gesturePhaseV1
This model is a fine-tuned version of [MCG-NJU/videomae-base](https://huggingface.co/MCG-NJU/videomae-base) on an unknown dataset.
It achieves the following results on the evaluation set:
- Accuracy: 0.5918
- Loss: 1.1628
- Accuracy Hold: 0.0
- Accuracy Stroke: 0.0
- Accuracy Recovery: 0.0
- Accuracy Preparation: 0.9221
- Accuracy Unknown: 0.4571
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- training_steps: 276
### Training results
| Training Loss | Epoch | Step | Accuracy | Validation Loss | Accuracy Hold | Accuracy Stroke | Accuracy Recovery | Accuracy Preparation | Accuracy Unknown |
|:-------------:|:------:|:----:|:--------:|:---------------:|:-------------:|:---------------:|:-----------------:|:--------------------:|:----------------:|
| 1.2297 | 0.2536 | 70 | 0.5597 | 1.2679 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 |
| 0.9724 | 1.2536 | 140 | 0.5597 | 1.2204 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 |
| 0.9151 | 2.2536 | 210 | 0.6119 | 1.0776 | 0.0 | 0.0 | 0.0 | 0.9333 | 0.4615 |
| 0.9169 | 3.2391 | 276 | 0.6269 | 1.0385 | 0.0 | 0.0 | 0.0 | 0.9067 | 0.6154 |
### Framework versions
- Transformers 4.41.1
- Pytorch 2.3.0+cu121
- Datasets 2.19.1
- Tokenizers 0.19.1
|