File size: 2,297 Bytes
dce3ad5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
---
license: mit
base_model: alexdg19/bert_large_xsum_samsum2
tags:
- generated_from_trainer
datasets:
- cnn_dailymail
metrics:
- rouge
model-index:
- name: bert_large_cnn_daily
  results:
  - task:
      name: Sequence-to-sequence Language Modeling
      type: text2text-generation
    dataset:
      name: cnn_dailymail
      type: cnn_dailymail
      config: 3.0.0
      split: test
      args: 3.0.0
    metrics:
    - name: Rouge1
      type: rouge
      value: 0.4251
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# bert_large_cnn_daily

This model is a fine-tuned version of [alexdg19/bert_large_xsum_samsum2](https://huggingface.co/alexdg19/bert_large_xsum_samsum2) on the cnn_dailymail dataset.
It achieves the following results on the evaluation set:
- Loss: 1.7065
- Rouge1: 0.4251
- Rouge2: 0.2024
- Rougel: 0.2992
- Rougelsum: 0.3961
- Gen Len: 60.6232

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 3
- eval_batch_size: 3
- seed: 42
- gradient_accumulation_steps: 3
- total_train_batch_size: 9
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 4
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len |
|:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:|:-------:|
| 1.6632        | 1.0   | 1021 | 1.6262          | 0.4191 | 0.1992 | 0.2957 | 0.39      | 60.6205 |
| 1.3734        | 2.0   | 2042 | 1.6078          | 0.4253 | 0.2046 | 0.3009 | 0.397     | 61.0692 |
| 1.1497        | 3.0   | 3064 | 1.6759          | 0.4254 | 0.2033 | 0.2998 | 0.3967    | 60.8555 |
| 1.0123        | 4.0   | 4084 | 1.7065          | 0.4251 | 0.2024 | 0.2992 | 0.3961    | 60.6232 |


### Framework versions

- Transformers 4.35.0
- Pytorch 2.1.0+cu118
- Datasets 2.14.6
- Tokenizers 0.14.1