File size: 2,078 Bytes
2128e47
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
---
license: mit
base_model: facebook/bart-large-cnn
tags:
- generated_from_trainer
metrics:
- rouge
model-index:
- name: bart-large-cnn-reddit-summary-v2
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# bart-large-cnn-reddit-summary-v2

This model is a fine-tuned version of [facebook/bart-large-cnn](https://huggingface.co/facebook/bart-large-cnn) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 1.9771
- Rouge1: 0.4603
- Rouge2: 0.1837
- Rougel: 0.2955
- Rougelsum: 0.3192
- Gen Len: 95.826

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 3
- eval_batch_size: 3
- seed: 42
- gradient_accumulation_steps: 3
- total_train_batch_size: 9
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len |
|:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:|:-------:|
| 1.904         | 1.0   | 1125 | 1.8620          | 0.4543 | 0.1821 | 0.2935 | 0.3157    | 91.077  |
| 1.5708        | 2.0   | 2251 | 1.8475          | 0.4557 | 0.183  | 0.2965 | 0.3187    | 90.2955 |
| 1.3314        | 3.0   | 3377 | 1.8665          | 0.4617 | 0.1871 | 0.2988 | 0.3213    | 94.3165 |
| 1.1664        | 4.0   | 4502 | 1.9205          | 0.4609 | 0.1849 | 0.2952 | 0.3184    | 98.4065 |
| 1.0452        | 5.0   | 5625 | 1.9771          | 0.4603 | 0.1837 | 0.2955 | 0.3192    | 95.826  |


### Framework versions

- Transformers 4.35.2
- Pytorch 2.1.0+cu121
- Datasets 2.15.0
- Tokenizers 0.15.0