File size: 2,033 Bytes
26d983b 2c8a0d0 906f805 26d983b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 |
---
base_model: TheBloke/Mistral-7B-Instruct-v0.2-GPTQ
library_name: peft
license: apache-2.0
tags:
- generated_from_trainer
model-index:
- name: ai-doctor-mental-health-ft
results: []
language:
- en
datasets:
- heliosbrahma/mental_health_chatbot_dataset
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# ai-doctor-mental-health-ft
This model is a fine-tuned version of [TheBloke/Mistral-7B-Instruct-v0.2-GPTQ](https://huggingface.co/TheBloke/Mistral-7B-Instruct-v0.2-GPTQ) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 3.1807
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 2
- num_epochs: 10
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| 2.6533 | 0.9730 | 9 | 3.1807 |
| 2.6383 | 1.9459 | 18 | 3.1807 |
| 2.6153 | 2.9189 | 27 | 3.1807 |
| 2.3762 | 4.0 | 37 | 3.1807 |
| 2.6248 | 4.9730 | 46 | 3.1807 |
| 2.6247 | 5.9459 | 55 | 3.1807 |
| 2.6254 | 6.9189 | 64 | 3.1807 |
| 2.3817 | 8.0 | 74 | 3.1807 |
| 2.6391 | 8.9730 | 83 | 3.1807 |
| 2.4431 | 9.7297 | 90 | 3.1807 |
### Framework versions
- PEFT 0.11.1
- Transformers 4.40.2
- Pytorch 2.2.2+cu121
- Datasets 2.21.0
- Tokenizers 0.19.1 |