File size: 2,137 Bytes
8baafd4 8087594 8baafd4 8087594 8baafd4 8087594 8baafd4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 |
---
license: apache-2.0
base_model: asapp/sew-mid-100k
tags:
- audio-classification
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: sew-ft-fake-detection
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# sew-ft-fake-detection
This model is a fine-tuned version of [asapp/sew-mid-100k](https://huggingface.co/asapp/sew-mid-100k) on the alexandreacff/kaggle-fake-detection dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6232
- Accuracy: 0.7439
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 32
- eval_batch_size: 16
- seed: 0
- gradient_accumulation_steps: 4
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 10.0
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:------:|:----:|:---------------:|:--------:|
| 0.6344 | 0.9851 | 33 | 0.6395 | 0.6505 |
| 0.6157 | 2.0 | 67 | 0.6703 | 0.5215 |
| 0.5572 | 2.9851 | 100 | 0.5615 | 0.7131 |
| 0.4968 | 4.0 | 134 | 0.8149 | 0.6944 |
| 0.4988 | 4.9851 | 167 | 0.8099 | 0.7037 |
| 0.4756 | 6.0 | 201 | 0.8319 | 0.7103 |
| 0.4334 | 6.9851 | 234 | 0.7317 | 0.7336 |
| 0.4321 | 8.0 | 268 | 0.6548 | 0.7383 |
| 0.4436 | 8.9851 | 301 | 0.6232 | 0.7439 |
| 0.4493 | 9.8507 | 330 | 0.6278 | 0.7439 |
### Framework versions
- Transformers 4.41.0.dev0
- Pytorch 2.1.0a0+32f93b1
- Datasets 2.19.1
- Tokenizers 0.19.1
|