alex-miller's picture
End of training
19b5134 verified
metadata
library_name: transformers
license: apache-2.0
base_model: google/vit-base-patch16-224-in21k
tags:
  - generated_from_trainer
metrics:
  - accuracy
model-index:
  - name: pogona-vitticeps-gender
    results: []

pogona-vitticeps-gender

This model is a fine-tuned version of google/vit-base-patch16-224-in21k on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5663
  • Accuracy: 0.7812

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 4e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 64
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Accuracy
1.1028 1.0 2 1.1062 0.2812
1.0972 2.0 4 1.1082 0.3125
1.0793 3.0 6 1.0692 0.5312
1.0529 4.0 8 1.0578 0.625
1.0178 5.0 10 1.0288 0.625
0.9809 6.0 12 0.9988 0.6562
0.9422 7.0 14 0.9936 0.6562
0.8692 8.0 16 0.9761 0.625
0.8503 9.0 18 0.9326 0.5938
0.8128 10.0 20 0.9236 0.6562
0.777 11.0 22 0.8541 0.75
0.7407 12.0 24 0.8744 0.6562
0.692 13.0 26 0.8412 0.6875
0.6779 14.0 28 0.8611 0.6562
0.6261 15.0 30 0.8213 0.625
0.609 16.0 32 0.7389 0.7188
0.5905 17.0 34 0.7421 0.7188
0.5337 18.0 36 0.7651 0.6875
0.5091 19.0 38 0.7201 0.75
0.5178 20.0 40 0.7424 0.7188
0.4757 21.0 42 0.7573 0.6562
0.4548 22.0 44 0.7531 0.6562
0.4494 23.0 46 0.7185 0.7188
0.4627 24.0 48 0.6587 0.7188
0.423 25.0 50 0.6426 0.75
0.403 26.0 52 0.6525 0.75
0.3734 27.0 54 0.6733 0.75
0.38 28.0 56 0.6736 0.75
0.3702 29.0 58 0.7211 0.6875
0.3563 30.0 60 0.7263 0.6562
0.336 31.0 62 0.6676 0.6875
0.3131 32.0 64 0.6923 0.6875
0.3214 33.0 66 0.6137 0.75
0.3271 34.0 68 0.6708 0.8125
0.3253 35.0 70 0.5912 0.75
0.283 36.0 72 0.6332 0.7188
0.2874 37.0 74 0.6345 0.7188
0.2818 38.0 76 0.7593 0.6875
0.2774 39.0 78 0.6817 0.7188
0.2482 40.0 80 0.6784 0.6875
0.261 41.0 82 0.6631 0.7188
0.2945 42.0 84 0.6438 0.75
0.2734 43.0 86 0.7086 0.75
0.2536 44.0 88 0.6380 0.7188
0.2643 45.0 90 0.6723 0.6562
0.2273 46.0 92 0.6775 0.7188
0.235 47.0 94 0.6876 0.7188
0.2642 48.0 96 0.6382 0.7188
0.2467 49.0 98 0.6701 0.7188
0.2382 50.0 100 0.5663 0.7812

Framework versions

  • Transformers 4.46.3
  • Pytorch 2.4.1+cu121
  • Datasets 3.1.0
  • Tokenizers 0.20.3