metadata
library_name: transformers
license: apache-2.0
base_model: google/vit-base-patch16-224-in21k
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: pogona-vitticeps-gender
results: []
pogona-vitticeps-gender
This model is a fine-tuned version of google/vit-base-patch16-224-in21k on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.5663
- Accuracy: 0.7812
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 4e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 64
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 50
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
1.1028 | 1.0 | 2 | 1.1062 | 0.2812 |
1.0972 | 2.0 | 4 | 1.1082 | 0.3125 |
1.0793 | 3.0 | 6 | 1.0692 | 0.5312 |
1.0529 | 4.0 | 8 | 1.0578 | 0.625 |
1.0178 | 5.0 | 10 | 1.0288 | 0.625 |
0.9809 | 6.0 | 12 | 0.9988 | 0.6562 |
0.9422 | 7.0 | 14 | 0.9936 | 0.6562 |
0.8692 | 8.0 | 16 | 0.9761 | 0.625 |
0.8503 | 9.0 | 18 | 0.9326 | 0.5938 |
0.8128 | 10.0 | 20 | 0.9236 | 0.6562 |
0.777 | 11.0 | 22 | 0.8541 | 0.75 |
0.7407 | 12.0 | 24 | 0.8744 | 0.6562 |
0.692 | 13.0 | 26 | 0.8412 | 0.6875 |
0.6779 | 14.0 | 28 | 0.8611 | 0.6562 |
0.6261 | 15.0 | 30 | 0.8213 | 0.625 |
0.609 | 16.0 | 32 | 0.7389 | 0.7188 |
0.5905 | 17.0 | 34 | 0.7421 | 0.7188 |
0.5337 | 18.0 | 36 | 0.7651 | 0.6875 |
0.5091 | 19.0 | 38 | 0.7201 | 0.75 |
0.5178 | 20.0 | 40 | 0.7424 | 0.7188 |
0.4757 | 21.0 | 42 | 0.7573 | 0.6562 |
0.4548 | 22.0 | 44 | 0.7531 | 0.6562 |
0.4494 | 23.0 | 46 | 0.7185 | 0.7188 |
0.4627 | 24.0 | 48 | 0.6587 | 0.7188 |
0.423 | 25.0 | 50 | 0.6426 | 0.75 |
0.403 | 26.0 | 52 | 0.6525 | 0.75 |
0.3734 | 27.0 | 54 | 0.6733 | 0.75 |
0.38 | 28.0 | 56 | 0.6736 | 0.75 |
0.3702 | 29.0 | 58 | 0.7211 | 0.6875 |
0.3563 | 30.0 | 60 | 0.7263 | 0.6562 |
0.336 | 31.0 | 62 | 0.6676 | 0.6875 |
0.3131 | 32.0 | 64 | 0.6923 | 0.6875 |
0.3214 | 33.0 | 66 | 0.6137 | 0.75 |
0.3271 | 34.0 | 68 | 0.6708 | 0.8125 |
0.3253 | 35.0 | 70 | 0.5912 | 0.75 |
0.283 | 36.0 | 72 | 0.6332 | 0.7188 |
0.2874 | 37.0 | 74 | 0.6345 | 0.7188 |
0.2818 | 38.0 | 76 | 0.7593 | 0.6875 |
0.2774 | 39.0 | 78 | 0.6817 | 0.7188 |
0.2482 | 40.0 | 80 | 0.6784 | 0.6875 |
0.261 | 41.0 | 82 | 0.6631 | 0.7188 |
0.2945 | 42.0 | 84 | 0.6438 | 0.75 |
0.2734 | 43.0 | 86 | 0.7086 | 0.75 |
0.2536 | 44.0 | 88 | 0.6380 | 0.7188 |
0.2643 | 45.0 | 90 | 0.6723 | 0.6562 |
0.2273 | 46.0 | 92 | 0.6775 | 0.7188 |
0.235 | 47.0 | 94 | 0.6876 | 0.7188 |
0.2642 | 48.0 | 96 | 0.6382 | 0.7188 |
0.2467 | 49.0 | 98 | 0.6701 | 0.7188 |
0.2382 | 50.0 | 100 | 0.5663 | 0.7812 |
Framework versions
- Transformers 4.46.3
- Pytorch 2.4.1+cu121
- Datasets 3.1.0
- Tokenizers 0.20.3