alex-miller's picture
End of training
445b1de verified
---
license: apache-2.0
base_model: alex-miller/ODABert
tags:
- generated_from_trainer
metrics:
- accuracy
- f1
- precision
- recall
model-index:
- name: iati-gender-multi-classifier-weighted-minitest
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# iati-gender-multi-classifier-weighted-minitest
This model is a fine-tuned version of [alex-miller/ODABert](https://huggingface.co/alex-miller/ODABert) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6625
- Accuracy: 0.8256
- F1: 0.6997
- Precision: 0.6138
- Recall: 0.8135
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-06
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:|
| 0.9142 | 1.0 | 616 | 0.7573 | 0.7352 | 0.5803 | 0.4802 | 0.7331 |
| 0.7431 | 2.0 | 1232 | 0.6871 | 0.7973 | 0.6652 | 0.5661 | 0.8062 |
| 0.6934 | 3.0 | 1848 | 0.6713 | 0.8160 | 0.6902 | 0.5955 | 0.8208 |
| 0.6631 | 4.0 | 2464 | 0.6609 | 0.8187 | 0.6944 | 0.5997 | 0.8245 |
| 0.6341 | 5.0 | 3080 | 0.6589 | 0.8237 | 0.6956 | 0.6117 | 0.8062 |
| 0.6143 | 6.0 | 3696 | 0.6551 | 0.8205 | 0.6970 | 0.6027 | 0.8263 |
| 0.5931 | 7.0 | 4312 | 0.6597 | 0.8201 | 0.6893 | 0.6061 | 0.7989 |
| 0.5773 | 8.0 | 4928 | 0.6579 | 0.8224 | 0.6963 | 0.6076 | 0.8154 |
| 0.5652 | 9.0 | 5544 | 0.6613 | 0.8233 | 0.6984 | 0.6087 | 0.8190 |
| 0.5597 | 10.0 | 6160 | 0.6625 | 0.8256 | 0.6997 | 0.6138 | 0.8135 |
### Framework versions
- Transformers 4.41.2
- Pytorch 2.3.0+cu121
- Datasets 2.19.2
- Tokenizers 0.19.1