alex-miller's picture
End of training
445b1de verified
metadata
license: apache-2.0
base_model: alex-miller/ODABert
tags:
  - generated_from_trainer
metrics:
  - accuracy
  - f1
  - precision
  - recall
model-index:
  - name: iati-gender-multi-classifier-weighted-minitest
    results: []

iati-gender-multi-classifier-weighted-minitest

This model is a fine-tuned version of alex-miller/ODABert on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6625
  • Accuracy: 0.8256
  • F1: 0.6997
  • Precision: 0.6138
  • Recall: 0.8135

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-06
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Accuracy F1 Precision Recall
0.9142 1.0 616 0.7573 0.7352 0.5803 0.4802 0.7331
0.7431 2.0 1232 0.6871 0.7973 0.6652 0.5661 0.8062
0.6934 3.0 1848 0.6713 0.8160 0.6902 0.5955 0.8208
0.6631 4.0 2464 0.6609 0.8187 0.6944 0.5997 0.8245
0.6341 5.0 3080 0.6589 0.8237 0.6956 0.6117 0.8062
0.6143 6.0 3696 0.6551 0.8205 0.6970 0.6027 0.8263
0.5931 7.0 4312 0.6597 0.8201 0.6893 0.6061 0.7989
0.5773 8.0 4928 0.6579 0.8224 0.6963 0.6076 0.8154
0.5652 9.0 5544 0.6613 0.8233 0.6984 0.6087 0.8190
0.5597 10.0 6160 0.6625 0.8256 0.6997 0.6138 0.8135

Framework versions

  • Transformers 4.41.2
  • Pytorch 2.3.0+cu121
  • Datasets 2.19.2
  • Tokenizers 0.19.1