metadata
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- billsum
metrics:
- rouge
- bleu
model-index:
- name: T5-small_finetuned_billsum_subset_model_bs16_lr5e-05
results:
- task:
name: Sequence-to-sequence Language Modeling
type: text2text-generation
dataset:
name: billsum
type: billsum
config: default
split: ca_test
args: default
metrics:
- name: Rouge1
type: rouge
value: 0.1918
- name: Bleu
type: bleu
value: 0.0008
T5-small_finetuned_billsum_subset_model_bs16_lr5e-05
This model is a fine-tuned version of t5-small on the billsum dataset. It achieves the following results on the evaluation set:
- Loss: 2.0113
- Rouge1: 0.1918
- Rouge2: 0.0975
- Rougel: 0.1668
- Rougelsum: 0.1665
- Gen Len: 19.0
- Bleu: 0.0008
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 4
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | Bleu |
---|---|---|---|---|---|---|---|---|---|
No log | 1.0 | 62 | 2.0260 | 0.1936 | 0.0982 | 0.1681 | 0.1678 | 19.0 | 0.0008 |
No log | 2.0 | 124 | 2.0155 | 0.1908 | 0.0949 | 0.1659 | 0.1656 | 19.0 | 0.0007 |
No log | 3.0 | 186 | 2.0131 | 0.1902 | 0.0948 | 0.1651 | 0.1646 | 19.0 | 0.0008 |
No log | 4.0 | 248 | 2.0113 | 0.1918 | 0.0975 | 0.1668 | 0.1665 | 19.0 | 0.0008 |
Framework versions
- Transformers 4.27.4
- Pytorch 2.0.0+cu118
- Datasets 2.11.0
- Tokenizers 0.13.3