alaahussein
commited on
Commit
•
6e39398
1
Parent(s):
a4e1653
update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,87 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
tags:
|
4 |
+
- generated_from_trainer
|
5 |
+
datasets:
|
6 |
+
- billsum
|
7 |
+
metrics:
|
8 |
+
- rouge
|
9 |
+
- bleu
|
10 |
+
model-index:
|
11 |
+
- name: T5-small_finetuned_billsum_subset_model_bs16_lr5e-05
|
12 |
+
results:
|
13 |
+
- task:
|
14 |
+
name: Sequence-to-sequence Language Modeling
|
15 |
+
type: text2text-generation
|
16 |
+
dataset:
|
17 |
+
name: billsum
|
18 |
+
type: billsum
|
19 |
+
config: default
|
20 |
+
split: ca_test
|
21 |
+
args: default
|
22 |
+
metrics:
|
23 |
+
- name: Rouge1
|
24 |
+
type: rouge
|
25 |
+
value: 0.1918
|
26 |
+
- name: Bleu
|
27 |
+
type: bleu
|
28 |
+
value: 0.0008
|
29 |
+
---
|
30 |
+
|
31 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
32 |
+
should probably proofread and complete it, then remove this comment. -->
|
33 |
+
|
34 |
+
# T5-small_finetuned_billsum_subset_model_bs16_lr5e-05
|
35 |
+
|
36 |
+
This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the billsum dataset.
|
37 |
+
It achieves the following results on the evaluation set:
|
38 |
+
- Loss: 2.0113
|
39 |
+
- Rouge1: 0.1918
|
40 |
+
- Rouge2: 0.0975
|
41 |
+
- Rougel: 0.1668
|
42 |
+
- Rougelsum: 0.1665
|
43 |
+
- Gen Len: 19.0
|
44 |
+
- Bleu: 0.0008
|
45 |
+
|
46 |
+
## Model description
|
47 |
+
|
48 |
+
More information needed
|
49 |
+
|
50 |
+
## Intended uses & limitations
|
51 |
+
|
52 |
+
More information needed
|
53 |
+
|
54 |
+
## Training and evaluation data
|
55 |
+
|
56 |
+
More information needed
|
57 |
+
|
58 |
+
## Training procedure
|
59 |
+
|
60 |
+
### Training hyperparameters
|
61 |
+
|
62 |
+
The following hyperparameters were used during training:
|
63 |
+
- learning_rate: 5e-05
|
64 |
+
- train_batch_size: 16
|
65 |
+
- eval_batch_size: 16
|
66 |
+
- seed: 42
|
67 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
68 |
+
- lr_scheduler_type: linear
|
69 |
+
- num_epochs: 4
|
70 |
+
- mixed_precision_training: Native AMP
|
71 |
+
|
72 |
+
### Training results
|
73 |
+
|
74 |
+
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | Bleu |
|
75 |
+
|:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:|:-------:|:------:|
|
76 |
+
| No log | 1.0 | 62 | 2.0260 | 0.1936 | 0.0982 | 0.1681 | 0.1678 | 19.0 | 0.0008 |
|
77 |
+
| No log | 2.0 | 124 | 2.0155 | 0.1908 | 0.0949 | 0.1659 | 0.1656 | 19.0 | 0.0007 |
|
78 |
+
| No log | 3.0 | 186 | 2.0131 | 0.1902 | 0.0948 | 0.1651 | 0.1646 | 19.0 | 0.0008 |
|
79 |
+
| No log | 4.0 | 248 | 2.0113 | 0.1918 | 0.0975 | 0.1668 | 0.1665 | 19.0 | 0.0008 |
|
80 |
+
|
81 |
+
|
82 |
+
### Framework versions
|
83 |
+
|
84 |
+
- Transformers 4.27.4
|
85 |
+
- Pytorch 2.0.0+cu118
|
86 |
+
- Datasets 2.11.0
|
87 |
+
- Tokenizers 0.13.3
|