File size: 12,066 Bytes
d90b3a8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 |
# Copyright (c) 2024, EleutherAI
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# Adapted from https://github.com/awaelchli/pytorch-lightning-snippets/blob/master/checkpoint/peek.py
import code
import os
import re
from argparse import ArgumentParser, Namespace
from collections.abc import Mapping, Sequence
from pathlib import Path
import torch
class COLORS:
BLUE = "\033[94m"
CYAN = "\033[96m"
GREEN = "\033[92m"
RED = "\033[31m"
YELLOW = "\033[33m"
MAGENTA = "\033[35m"
WHITE = "\033[37m"
UNDERLINE = "\033[4m"
END = "\033[0m"
PRIMITIVE_TYPES = (int, float, bool, str, type)
def natural_sort(l):
convert = lambda text: int(text) if text.isdigit() else text.lower()
alphanum_key = lambda key: [convert(c) for c in re.split("([0-9]+)", str(key))]
return sorted(l, key=alphanum_key)
def sizeof_fmt(num, suffix="B"):
for unit in ["", "Ki", "Mi", "Gi", "Ti", "Pi", "Ei", "Zi"]:
if abs(num) < 1024.0:
return "%3.1f%s%s" % (num, unit, suffix)
num /= 1024.0
return "%.1f%s%s" % (num, "Yi", suffix)
def pretty_print(contents: dict):
"""Prints a nice summary of the top-level contents in a checkpoint dictionary."""
col_size = max(len(str(k)) for k in contents)
for k, v in sorted(contents.items()):
key_length = len(str(k))
line = " " * (col_size - key_length)
line += f"{k}: {COLORS.BLUE}{type(v).__name__}{COLORS.END}"
if isinstance(v, dict):
pretty_print(v)
elif isinstance(v, PRIMITIVE_TYPES):
line += f" = "
line += f"{COLORS.CYAN}{repr(v)}{COLORS.END}"
elif isinstance(v, Sequence):
line += ", "
line += f"{COLORS.CYAN}len={len(v)}{COLORS.END}"
elif isinstance(v, torch.Tensor):
if v.ndimension() in (0, 1) and v.numel() == 1:
line += f" = "
line += f"{COLORS.CYAN}{v.item()}{COLORS.END}"
else:
line += ", "
line += f"{COLORS.CYAN}shape={list(v.shape)}{COLORS.END}"
line += ", "
line += f"{COLORS.CYAN}dtype={v.dtype}{COLORS.END}"
line += (
", "
+ f"{COLORS.CYAN}size={sizeof_fmt(v.nelement() * v.element_size())}{COLORS.END}"
)
print(line)
def common_entries(*dcts):
if not dcts:
return
for i in set(dcts[0]).intersection(*dcts[1:]):
yield (i,) + tuple(d[i] for d in dcts)
def pretty_print_double(contents1: dict, contents2: dict, args):
"""Prints a nice summary of the top-level contents in a checkpoint dictionary."""
col_size = max(
max(len(str(k)) for k in contents1), max(len(str(k)) for k in contents2)
)
common_keys = list(contents1.keys() & contents2.keys())
uncommon_keys_1 = [i for i in contents2.keys() if i not in common_keys]
uncommon_keys_2 = [i for i in contents1.keys() if i not in common_keys]
diffs_found = False
if uncommon_keys_1 + uncommon_keys_2:
diffs_found = True
if uncommon_keys_1:
print(
f"{COLORS.RED}{len(uncommon_keys_1)} key(s) found in ckpt 1 that isn't present in ckpt 2:{COLORS.END} \n\t{COLORS.BLUE}{' '.join(uncommon_keys_1)}{COLORS.END}"
)
if uncommon_keys_2:
print(
f"{COLORS.RED}{len(uncommon_keys_2)} key(s) found in ckpt 2 that isn't present in ckpt 1:{COLORS.END} \n\t{COLORS.BLUE}{' '.join(uncommon_keys_2)}{COLORS.END}"
)
for k, v1, v2 in sorted(common_entries(contents1, contents2)):
key_length = len(str(k))
line = " " * (col_size - key_length)
if type(v1) != type(v2):
print(
f"{COLORS.RED}{k} is a different type between ckpt1 and ckpt2: ({type(v1).__name__} vs. {type(v2).__name__}){COLORS.END}"
)
continue
else:
prefix = f"{k}: {COLORS.BLUE}{type(v1).__name__} | {type(v2).__name__}{COLORS.END}"
if isinstance(v1, dict):
pretty_print_double(v1, v2, args)
elif isinstance(v1, PRIMITIVE_TYPES):
if repr(v1) != repr(v2):
c = COLORS.RED
line += f" = "
line += f"{c}{repr(v1)} | {repr(v2)}{COLORS.END}"
else:
c = COLORS.CYAN
if not args.diff:
line += f" = "
line += f"{c}{repr(v1)} | {repr(v2)}{COLORS.END}"
elif isinstance(v1, Sequence):
if len(v1) != len(v2):
c = COLORS.RED
line += ", "
line += f"{c}len={len(v1)} | len={len(v2)}{COLORS.END}"
else:
c = COLORS.CYAN
if not args.diff:
line += ", "
line += f"{c}len={len(v1)} | len={len(v2)}{COLORS.END}"
elif isinstance(v1, torch.Tensor):
if v1.ndimension() != v2.ndimension():
c = COLORS.RED
else:
c = COLORS.CYAN
if (v1.ndimension() in (0, 1) and v1.numel() == 1) and (
v2.ndimension() in (0, 1) and v2.numel() == 1
):
if not args.diff:
line += f" = "
line += f"{c}{v1.item()} | {c}{v2.item()}{COLORS.END}"
else:
if list(v1.shape) != list(v2.shape):
c = COLORS.RED
line += ", "
line += f"{c}shape={list(v1.shape)} | shape={list(v2.shape)}{COLORS.END}"
else:
c = COLORS.CYAN
if not args.diff:
line += ", "
line += f"{c}shape={list(v1.shape)} | shape={list(v2.shape)}{COLORS.END}"
if v1.dtype != v2.dtype:
c = COLORS.RED
line += f"{c}dtype={v1.dtype} | dtype={v2.dtype}{COLORS.END}"
else:
c = COLORS.CYAN
if not args.diff:
line += ", "
line += f"{c}dtype={v1.dtype} | dtype={v2.dtype}{COLORS.END}"
if list(v1.shape) == list(v2.shape):
if torch.allclose(v1, v2):
if not args.diff:
line += f", {COLORS.CYAN}VALUES EQUAL{COLORS.END}"
else:
line += f", {COLORS.RED}VALUES DIFFER{COLORS.END}"
if line.replace(" ", "") != "":
line = prefix + line
print(line)
diffs_found = True
if args.diff and not diffs_found:
pass
else:
if not args.diff:
print("\n")
return diffs_found
def get_attribute(obj: object, name: str) -> object:
if isinstance(obj, Mapping):
return obj[name]
if isinstance(obj, Namespace):
return obj.name
return getattr(object, name)
def get_files(pth):
if os.path.isdir(pth):
files = list(Path(pth).glob("*.pt")) + list(Path(pth).glob("*.ckpt"))
elif os.path.isfile(pth):
assert pth.endswith(".pt") or pth.endswith(".ckpt")
files = [Path(pth)]
else:
raise ValueError("Dir / File not found.")
return natural_sort(files)
def peek(args: Namespace):
files = get_files(args.dir)
for file in files:
file = Path(file).absolute()
print(f"{COLORS.GREEN}{file.name}:{COLORS.END}")
ckpt = torch.load(file, map_location=torch.device("cpu"))
selection = dict()
attribute_names = args.attributes or list(ckpt.keys())
for name in attribute_names:
parts = name.split("/")
current = ckpt
for part in parts:
current = get_attribute(current, part)
selection.update({name: current})
pretty_print(selection)
print("\n")
if args.interactive:
code.interact(
banner="Entering interactive shell. You can access the checkpoint contents through the local variable 'checkpoint'.",
local={"checkpoint": ckpt, "torch": torch},
)
def get_shared_fnames(files_1, files_2):
names_1 = [Path(i).name for i in files_1]
names_1_parent = Path(files_1[0]).parent
names_2 = [Path(i).name for i in files_2]
names_2_parent = Path(files_2[0]).parent
shared_names = list(set.intersection(*map(set, [names_1, names_2])))
return [names_1_parent / i for i in shared_names], [
names_2_parent / i for i in shared_names
]
def get_selection(filename, args):
ckpt = torch.load(filename, map_location=torch.device("cpu"))
selection = dict()
attribute_names = args.attributes or list(ckpt.keys())
for name in attribute_names:
parts = name.split("/")
current = ckpt
for part in parts:
current = get_attribute(current, part)
selection.update({name: current})
return selection
def compare(args: Namespace):
dirs = [i.strip() for i in args.dir.split(",")]
assert len(dirs) == 2, "Only works with 2 directories / files"
files_1 = get_files(dirs[0])
files_2 = get_files(dirs[1])
files_1, files_2 = get_shared_fnames(files_1, files_2)
for file1, file2 in zip(files_1, files_2):
file1 = Path(file1).absolute()
file2 = Path(file2).absolute()
print(f"COMPARING {COLORS.GREEN}{file1.name} & {file2.name}:{COLORS.END}")
selection_1 = get_selection(file1, args)
selection_2 = get_selection(file2, args)
diffs_found = pretty_print_double(selection_1, selection_2, args)
if args.diff and diffs_found:
print(
f"{COLORS.RED}THE ABOVE DIFFS WERE FOUND IN {file1.name} & {file2.name} ^{COLORS.END}\n"
)
if args.interactive:
code.interact(
banner="Entering interactive shell. You can access the checkpoint contents through the local variable 'selection_1' / 'selection_2'.\nPress Ctrl-D to exit.",
local={
"selection_1": selection_1,
"selection_2": selection_2,
"torch": torch,
},
)
def main():
parser = ArgumentParser()
parser.add_argument(
"dir",
type=str,
help="The checkpoint dir to inspect. Must be either: \
- a directory containing pickle binaries saved with 'torch.save' ending in .pt or .ckpt \
- a single path to a .pt or .ckpt file \
- two comma separated directories - in which case the script will *compare* the two checkpoints",
)
parser.add_argument(
"--attributes",
nargs="*",
help="Name of one or several attributes to query. To access an attribute within a nested structure, use '/' as separator.",
default=None,
)
parser.add_argument(
"--interactive",
"-i",
action="store_true",
help="Drops into interactive shell after printing the summary.",
)
parser.add_argument(
"--compare",
"-c",
action="store_true",
help="If true, script will compare two directories separated by commas",
)
parser.add_argument(
"--diff", "-d", action="store_true", help="In compare mode, only print diffs"
)
args = parser.parse_args()
if args.compare:
compare(args)
else:
peek(args)
if __name__ == "__main__":
main()
|