File size: 18,316 Bytes
11be304
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
import torch
import torch.nn as nn
import functools
from torch.autograd import Variable
import numpy as np

###############################################################################
# Functions
###############################################################################
def weights_init(m):
    classname = m.__class__.__name__
    if classname.find('Conv') != -1:
        m.weight.data.normal_(0.0, 0.02)
    elif classname.find('BatchNorm2d') != -1:
        m.weight.data.normal_(1.0, 0.02)
        m.bias.data.fill_(0)

def get_norm_layer(norm_type='instance'):
    if norm_type == 'batch':
        norm_layer = functools.partial(nn.BatchNorm2d, affine=True)
    elif norm_type == 'instance':
        norm_layer = functools.partial(nn.InstanceNorm2d, affine=False)
    else:
        raise NotImplementedError('normalization layer [%s] is not found' % norm_type)
    return norm_layer

def define_G(input_nc, output_nc, ngf, netG, n_downsample_global=3, n_blocks_global=9, n_local_enhancers=1, 
             n_blocks_local=3, norm='instance', gpu_ids=[]):    
    norm_layer = get_norm_layer(norm_type=norm)     
    if netG == 'global':    
        netG = GlobalGenerator(input_nc, output_nc, ngf, n_downsample_global, n_blocks_global, norm_layer)       
    elif netG == 'local':        
        netG = LocalEnhancer(input_nc, output_nc, ngf, n_downsample_global, n_blocks_global, 
                                  n_local_enhancers, n_blocks_local, norm_layer)
    elif netG == 'encoder':
        netG = Encoder(input_nc, output_nc, ngf, n_downsample_global, norm_layer)
    else:
        raise('generator not implemented!')
    print(netG)
    if len(gpu_ids) > 0:
        assert(torch.cuda.is_available())   
        netG.cuda(gpu_ids[0])
    netG.apply(weights_init)
    return netG

def define_D(input_nc, ndf, n_layers_D, norm='instance', use_sigmoid=False, num_D=1, getIntermFeat=False, gpu_ids=[]):        
    norm_layer = get_norm_layer(norm_type=norm)   
    netD = MultiscaleDiscriminator(input_nc, ndf, n_layers_D, norm_layer, use_sigmoid, num_D, getIntermFeat)   
    print(netD)
    if len(gpu_ids) > 0:
        assert(torch.cuda.is_available())
        netD.cuda(gpu_ids[0])
    netD.apply(weights_init)
    return netD

def print_network(net):
    if isinstance(net, list):
        net = net[0]
    num_params = 0
    for param in net.parameters():
        num_params += param.numel()
    print(net)
    print('Total number of parameters: %d' % num_params)

##############################################################################
# Losses
##############################################################################
class GANLoss(nn.Module):
    def __init__(self, use_lsgan=True, target_real_label=1.0, target_fake_label=0.0,
                 tensor=torch.FloatTensor):
        super(GANLoss, self).__init__()
        self.real_label = target_real_label
        self.fake_label = target_fake_label
        self.real_label_var = None
        self.fake_label_var = None
        self.Tensor = tensor
        if use_lsgan:
            self.loss = nn.MSELoss()
        else:
            self.loss = nn.BCELoss()

    def get_target_tensor(self, input, target_is_real):
        target_tensor = None
        if target_is_real:
            create_label = ((self.real_label_var is None) or
                            (self.real_label_var.numel() != input.numel()))
            if create_label:
                real_tensor = self.Tensor(input.size()).fill_(self.real_label)
                self.real_label_var = Variable(real_tensor, requires_grad=False)
            target_tensor = self.real_label_var
        else:
            create_label = ((self.fake_label_var is None) or
                            (self.fake_label_var.numel() != input.numel()))
            if create_label:
                fake_tensor = self.Tensor(input.size()).fill_(self.fake_label)
                self.fake_label_var = Variable(fake_tensor, requires_grad=False)
            target_tensor = self.fake_label_var
        return target_tensor

    def __call__(self, input, target_is_real):
        if isinstance(input[0], list):
            loss = 0
            for input_i in input:
                pred = input_i[-1]
                target_tensor = self.get_target_tensor(pred, target_is_real)
                loss += self.loss(pred, target_tensor)
            return loss
        else:            
            target_tensor = self.get_target_tensor(input[-1], target_is_real)
            return self.loss(input[-1], target_tensor)

class VGGLoss(nn.Module):
    def __init__(self, gpu_ids):
        super(VGGLoss, self).__init__()        
        self.vgg = Vgg19().cuda()
        self.criterion = nn.L1Loss()
        self.weights = [1.0/32, 1.0/16, 1.0/8, 1.0/4, 1.0]        

    def forward(self, x, y):              
        x_vgg, y_vgg = self.vgg(x), self.vgg(y)
        loss = 0
        for i in range(len(x_vgg)):
            loss += self.weights[i] * self.criterion(x_vgg[i], y_vgg[i].detach())        
        return loss

##############################################################################
# Generator
##############################################################################
class LocalEnhancer(nn.Module):
    def __init__(self, input_nc, output_nc, ngf=32, n_downsample_global=3, n_blocks_global=9, 
                 n_local_enhancers=1, n_blocks_local=3, norm_layer=nn.BatchNorm2d, padding_type='reflect'):        
        super(LocalEnhancer, self).__init__()
        self.n_local_enhancers = n_local_enhancers
        
        ###### global generator model #####           
        ngf_global = ngf * (2**n_local_enhancers)
        model_global = GlobalGenerator(input_nc, output_nc, ngf_global, n_downsample_global, n_blocks_global, norm_layer).model        
        model_global = [model_global[i] for i in range(len(model_global)-3)] # get rid of final convolution layers        
        self.model = nn.Sequential(*model_global)                

        ###### local enhancer layers #####
        for n in range(1, n_local_enhancers+1):
            ### downsample            
            ngf_global = ngf * (2**(n_local_enhancers-n))
            model_downsample = [nn.ReflectionPad2d(3), nn.Conv2d(input_nc, ngf_global, kernel_size=7, padding=0), 
                                norm_layer(ngf_global), nn.ReLU(True),
                                nn.Conv2d(ngf_global, ngf_global * 2, kernel_size=3, stride=2, padding=1), 
                                norm_layer(ngf_global * 2), nn.ReLU(True)]
            ### residual blocks
            model_upsample = []
            for i in range(n_blocks_local):
                model_upsample += [ResnetBlock(ngf_global * 2, padding_type=padding_type, norm_layer=norm_layer)]

            ### upsample
            model_upsample += [nn.ConvTranspose2d(ngf_global * 2, ngf_global, kernel_size=3, stride=2, padding=1, output_padding=1), 
                               norm_layer(ngf_global), nn.ReLU(True)]      

            ### final convolution
            if n == n_local_enhancers:                
                model_upsample += [nn.ReflectionPad2d(3), nn.Conv2d(ngf, output_nc, kernel_size=7, padding=0), nn.Tanh()]                       
            
            setattr(self, 'model'+str(n)+'_1', nn.Sequential(*model_downsample))
            setattr(self, 'model'+str(n)+'_2', nn.Sequential(*model_upsample))                  
        
        self.downsample = nn.AvgPool2d(3, stride=2, padding=[1, 1], count_include_pad=False)

    def forward(self, input): 
        ### create input pyramid
        input_downsampled = [input]
        for i in range(self.n_local_enhancers):
            input_downsampled.append(self.downsample(input_downsampled[-1]))

        ### output at coarest level
        output_prev = self.model(input_downsampled[-1])        
        ### build up one layer at a time
        for n_local_enhancers in range(1, self.n_local_enhancers+1):
            model_downsample = getattr(self, 'model'+str(n_local_enhancers)+'_1')
            model_upsample = getattr(self, 'model'+str(n_local_enhancers)+'_2')            
            input_i = input_downsampled[self.n_local_enhancers-n_local_enhancers]            
            output_prev = model_upsample(model_downsample(input_i) + output_prev)
        return output_prev

class GlobalGenerator(nn.Module):
    def __init__(self, input_nc, output_nc, ngf=64, n_downsampling=3, n_blocks=9, norm_layer=nn.BatchNorm2d, 
                 padding_type='reflect'):
        assert(n_blocks >= 0)
        super(GlobalGenerator, self).__init__()        
        activation = nn.ReLU(True)        

        model = [nn.ReflectionPad2d(3), nn.Conv2d(input_nc, ngf, kernel_size=7, padding=0), norm_layer(ngf), activation]
        ### downsample
        for i in range(n_downsampling):
            mult = 2**i
            model += [nn.Conv2d(ngf * mult, ngf * mult * 2, kernel_size=3, stride=2, padding=1),
                      norm_layer(ngf * mult * 2), activation]

        ### resnet blocks
        mult = 2**n_downsampling
        for i in range(n_blocks):
            model += [ResnetBlock(ngf * mult, padding_type=padding_type, activation=activation, norm_layer=norm_layer)]
        
        ### upsample         
        for i in range(n_downsampling):
            mult = 2**(n_downsampling - i)
            model += [nn.ConvTranspose2d(ngf * mult, int(ngf * mult / 2), kernel_size=3, stride=2, padding=1, output_padding=1),
                       norm_layer(int(ngf * mult / 2)), activation]
        model += [nn.ReflectionPad2d(3), nn.Conv2d(ngf, output_nc, kernel_size=7, padding=0), nn.Tanh()]        
        self.model = nn.Sequential(*model)
            
    def forward(self, input):
        return self.model(input)             
        
# Define a resnet block
class ResnetBlock(nn.Module):
    def __init__(self, dim, padding_type, norm_layer, activation=nn.ReLU(True), use_dropout=False):
        super(ResnetBlock, self).__init__()
        self.conv_block = self.build_conv_block(dim, padding_type, norm_layer, activation, use_dropout)

    def build_conv_block(self, dim, padding_type, norm_layer, activation, use_dropout):
        conv_block = []
        p = 0
        if padding_type == 'reflect':
            conv_block += [nn.ReflectionPad2d(1)]
        elif padding_type == 'replicate':
            conv_block += [nn.ReplicationPad2d(1)]
        elif padding_type == 'zero':
            p = 1
        else:
            raise NotImplementedError('padding [%s] is not implemented' % padding_type)

        conv_block += [nn.Conv2d(dim, dim, kernel_size=3, padding=p),
                       norm_layer(dim),
                       activation]
        if use_dropout:
            conv_block += [nn.Dropout(0.5)]

        p = 0
        if padding_type == 'reflect':
            conv_block += [nn.ReflectionPad2d(1)]
        elif padding_type == 'replicate':
            conv_block += [nn.ReplicationPad2d(1)]
        elif padding_type == 'zero':
            p = 1
        else:
            raise NotImplementedError('padding [%s] is not implemented' % padding_type)
        conv_block += [nn.Conv2d(dim, dim, kernel_size=3, padding=p),
                       norm_layer(dim)]

        return nn.Sequential(*conv_block)

    def forward(self, x):
        out = x + self.conv_block(x)
        return out

class Encoder(nn.Module):
    def __init__(self, input_nc, output_nc, ngf=32, n_downsampling=4, norm_layer=nn.BatchNorm2d):
        super(Encoder, self).__init__()        
        self.output_nc = output_nc        

        model = [nn.ReflectionPad2d(3), nn.Conv2d(input_nc, ngf, kernel_size=7, padding=0), 
                 norm_layer(ngf), nn.ReLU(True)]             
        ### downsample
        for i in range(n_downsampling):
            mult = 2**i
            model += [nn.Conv2d(ngf * mult, ngf * mult * 2, kernel_size=3, stride=2, padding=1),
                      norm_layer(ngf * mult * 2), nn.ReLU(True)]

        ### upsample         
        for i in range(n_downsampling):
            mult = 2**(n_downsampling - i)
            model += [nn.ConvTranspose2d(ngf * mult, int(ngf * mult / 2), kernel_size=3, stride=2, padding=1, output_padding=1),
                       norm_layer(int(ngf * mult / 2)), nn.ReLU(True)]        

        model += [nn.ReflectionPad2d(3), nn.Conv2d(ngf, output_nc, kernel_size=7, padding=0), nn.Tanh()]
        self.model = nn.Sequential(*model) 

    def forward(self, input, inst):
        outputs = self.model(input)

        # instance-wise average pooling
        outputs_mean = outputs.clone()
        inst_list = np.unique(inst.cpu().numpy().astype(int))        
        for i in inst_list:
            for b in range(input.size()[0]):
                indices = (inst[b:b+1] == int(i)).nonzero() # n x 4            
                for j in range(self.output_nc):
                    output_ins = outputs[indices[:,0] + b, indices[:,1] + j, indices[:,2], indices[:,3]]                    
                    mean_feat = torch.mean(output_ins).expand_as(output_ins)                                        
                    outputs_mean[indices[:,0] + b, indices[:,1] + j, indices[:,2], indices[:,3]] = mean_feat                       
        return outputs_mean

class MultiscaleDiscriminator(nn.Module):
    def __init__(self, input_nc, ndf=64, n_layers=3, norm_layer=nn.BatchNorm2d, 
                 use_sigmoid=False, num_D=3, getIntermFeat=False):
        super(MultiscaleDiscriminator, self).__init__()
        self.num_D = num_D
        self.n_layers = n_layers
        self.getIntermFeat = getIntermFeat
     
        for i in range(num_D):
            netD = NLayerDiscriminator(input_nc, ndf, n_layers, norm_layer, use_sigmoid, getIntermFeat)
            if getIntermFeat:                                
                for j in range(n_layers+2):
                    setattr(self, 'scale'+str(i)+'_layer'+str(j), getattr(netD, 'model'+str(j)))                                   
            else:
                setattr(self, 'layer'+str(i), netD.model)

        self.downsample = nn.AvgPool2d(3, stride=2, padding=[1, 1], count_include_pad=False)

    def singleD_forward(self, model, input):
        if self.getIntermFeat:
            result = [input]
            for i in range(len(model)):
                result.append(model[i](result[-1]))
            return result[1:]
        else:
            return [model(input)]

    def forward(self, input):        
        num_D = self.num_D
        result = []
        input_downsampled = input
        for i in range(num_D):
            if self.getIntermFeat:
                model = [getattr(self, 'scale'+str(num_D-1-i)+'_layer'+str(j)) for j in range(self.n_layers+2)]
            else:
                model = getattr(self, 'layer'+str(num_D-1-i))
            result.append(self.singleD_forward(model, input_downsampled))
            if i != (num_D-1):
                input_downsampled = self.downsample(input_downsampled)
        return result
        
# Defines the PatchGAN discriminator with the specified arguments.
class NLayerDiscriminator(nn.Module):
    def __init__(self, input_nc, ndf=64, n_layers=3, norm_layer=nn.BatchNorm2d, use_sigmoid=False, getIntermFeat=False):
        super(NLayerDiscriminator, self).__init__()
        self.getIntermFeat = getIntermFeat
        self.n_layers = n_layers

        kw = 4
        padw = int(np.ceil((kw-1.0)/2))
        sequence = [[nn.Conv2d(input_nc, ndf, kernel_size=kw, stride=2, padding=padw), nn.LeakyReLU(0.2, True)]]

        nf = ndf
        for n in range(1, n_layers):
            nf_prev = nf
            nf = min(nf * 2, 512)
            sequence += [[
                nn.Conv2d(nf_prev, nf, kernel_size=kw, stride=2, padding=padw),
                norm_layer(nf), nn.LeakyReLU(0.2, True)
            ]]

        nf_prev = nf
        nf = min(nf * 2, 512)
        sequence += [[
            nn.Conv2d(nf_prev, nf, kernel_size=kw, stride=1, padding=padw),
            norm_layer(nf),
            nn.LeakyReLU(0.2, True)
        ]]

        sequence += [[nn.Conv2d(nf, 1, kernel_size=kw, stride=1, padding=padw)]]

        if use_sigmoid:
            sequence += [[nn.Sigmoid()]]

        if getIntermFeat:
            for n in range(len(sequence)):
                setattr(self, 'model'+str(n), nn.Sequential(*sequence[n]))
        else:
            sequence_stream = []
            for n in range(len(sequence)):
                sequence_stream += sequence[n]
            self.model = nn.Sequential(*sequence_stream)

    def forward(self, input):
        if self.getIntermFeat:
            res = [input]
            for n in range(self.n_layers+2):
                model = getattr(self, 'model'+str(n))
                res.append(model(res[-1]))
            return res[1:]
        else:
            return self.model(input)        

from torchvision import models
class Vgg19(torch.nn.Module):
    def __init__(self, requires_grad=False):
        super(Vgg19, self).__init__()
        vgg_pretrained_features = models.vgg19(pretrained=True).features
        self.slice1 = torch.nn.Sequential()
        self.slice2 = torch.nn.Sequential()
        self.slice3 = torch.nn.Sequential()
        self.slice4 = torch.nn.Sequential()
        self.slice5 = torch.nn.Sequential()
        for x in range(2):
            self.slice1.add_module(str(x), vgg_pretrained_features[x])
        for x in range(2, 7):
            self.slice2.add_module(str(x), vgg_pretrained_features[x])
        for x in range(7, 12):
            self.slice3.add_module(str(x), vgg_pretrained_features[x])
        for x in range(12, 21):
            self.slice4.add_module(str(x), vgg_pretrained_features[x])
        for x in range(21, 30):
            self.slice5.add_module(str(x), vgg_pretrained_features[x])
        if not requires_grad:
            for param in self.parameters():
                param.requires_grad = False

    def forward(self, X):
        h_relu1 = self.slice1(X)
        h_relu2 = self.slice2(h_relu1)        
        h_relu3 = self.slice3(h_relu2)        
        h_relu4 = self.slice4(h_relu3)        
        h_relu5 = self.slice5(h_relu4)                
        out = [h_relu1, h_relu2, h_relu3, h_relu4, h_relu5]
        return out