metadata
language: sq
widget:
- text: >-
Varianti AY.4.2 është më i lehtë për t'u transmetuar, thotë Francois Balu,
drejtor i Institutit të Gjenetikës në Londër.
Albanian Named Entity Recognition (NER) Model
This model is the fine-tuned model of "bert-base-multilingual-cased" using the famous WikiANN dataset presented in the "Cross-lingual Name Tagging and Linking for 282 Languages" paper.
Fine-tuning parameters:
task = "ner"
model_checkpoint = "bert-base-multilingual-cased"
batch_size = 8
label_list = ['O', 'B-PER', 'I-PER', 'B-ORG', 'I-ORG', 'B-LOC', 'I-LOC']
max_length = 512
learning_rate = 2e-5
num_train_epochs = 3
weight_decay = 0.01
How to use:
model = AutoModelForTokenClassification.from_pretrained("akdeniz27/mbert-base-albanian-cased-ner")
tokenizer = AutoTokenizer.from_pretrained("akdeniz27/mbert-base-albanian-cased-ner")
ner = pipeline('ner', model=model, tokenizer=tokenizer, aggregation_strategy="first")
ner("<your text here>")
Pls refer "https://huggingface.co/transformers/_modules/transformers/pipelines/token_classification.html" for entity grouping with aggregation_strategy parameter.
Reference test results:
- accuracy: 0.9719268816143276
- f1: 0.9192366826444787
- precision: 0.9171629669734704
- recall: 0.9213197969543148