File size: 1,934 Bytes
baff3e6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5a0e443
 
baff3e6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5a0e443
baff3e6
 
 
 
 
5a0e443
 
 
 
 
 
 
 
 
baff3e6
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
---
license: apache-2.0
base_model: distilbert/distilbert-base-uncased
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: mental_classification
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# mental_classification

This model is a fine-tuned version of [distilbert/distilbert-base-uncased](https://huggingface.co/distilbert/distilbert-base-uncased) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6424
- Accuracy: 0.8623

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 14

### Training results

| Training Loss | Epoch   | Step | Validation Loss | Accuracy |
|:-------------:|:-------:|:----:|:---------------:|:--------:|
| 2.356         | 1.4046  | 184  | 1.6835          | 0.5908   |
| 1.2119        | 2.8092  | 368  | 1.1011          | 0.7648   |
| 0.6548        | 4.2137  | 552  | 0.8192          | 0.8241   |
| 0.3782        | 5.6183  | 736  | 0.6968          | 0.8375   |
| 0.1931        | 7.0229  | 920  | 0.6587          | 0.8528   |
| 0.1127        | 8.4275  | 1104 | 0.6390          | 0.8566   |
| 0.081         | 9.8321  | 1288 | 0.6382          | 0.8566   |
| 0.0532        | 11.2366 | 1472 | 0.6433          | 0.8623   |
| 0.0416        | 12.6412 | 1656 | 0.6424          | 0.8623   |


### Framework versions

- Transformers 4.42.4
- Pytorch 2.3.1+cu121
- Datasets 2.21.0
- Tokenizers 0.19.1