ajibawa-2023's picture
Update README.md
e4a8296 verified
---
language:
- en
license: other
tags:
- code
datasets:
- ajibawa-2023/Code-290k-ShareGPT
model-index:
- name: Code-290k-6.7B-Instruct
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: AI2 Reasoning Challenge (25-Shot)
type: ai2_arc
config: ARC-Challenge
split: test
args:
num_few_shot: 25
metrics:
- type: acc_norm
value: 34.9
name: normalized accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=ajibawa-2023/Code-290k-6.7B-Instruct
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: HellaSwag (10-Shot)
type: hellaswag
split: validation
args:
num_few_shot: 10
metrics:
- type: acc_norm
value: 51.99
name: normalized accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=ajibawa-2023/Code-290k-6.7B-Instruct
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU (5-Shot)
type: cais/mmlu
config: all
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 34.89
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=ajibawa-2023/Code-290k-6.7B-Instruct
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: TruthfulQA (0-shot)
type: truthful_qa
config: multiple_choice
split: validation
args:
num_few_shot: 0
metrics:
- type: mc2
value: 41.95
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=ajibawa-2023/Code-290k-6.7B-Instruct
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: Winogrande (5-shot)
type: winogrande
config: winogrande_xl
split: validation
args:
num_few_shot: 5
metrics:
- type: acc
value: 52.64
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=ajibawa-2023/Code-290k-6.7B-Instruct
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GSM8k (5-shot)
type: gsm8k
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 3.49
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=ajibawa-2023/Code-290k-6.7B-Instruct
name: Open LLM Leaderboard
---
**Code-290k-6.7B-Instruct**
This model is trained on [DeepSeek-Coder-6.7B-Instruct](https://huggingface.co/deepseek-ai/deepseek-coder-6.7b-instruct). I have used my existing dataset [Code-290k-ShareGPT](https://huggingface.co/datasets/ajibawa-2023/Code-290k-ShareGPT) for training purpose.
It is trained on around 290000 set of codes. Along with Python, Java, JavaScript, GO, C++, Rust, Ruby, Sql, MySql, R, Julia, Haskell, etc. code with detailed explanation is used for training purpose.
This model utilises Alpaca format. Besides code generation it will also give you explanation.
**Training:**
Entire dataset was trained on 4 x A100 80GB. For 3 epoch, training took 85 hours. DeepSeek-Coder codebase and DeepSpeed was used for training purpose.
This is a full fine tuned model.
Links for quantized models are given below.
**Exllama**
Exllama v2:[Link](https://huggingface.co/bartowski/Code-290k-6.7B-Instruct-exl2)
Extremely thankful to [Bartowski](https://huggingface.co/bartowski) for making Quantized version of the model.
**Example Prompt**:
```
This is a conversation with your helpful AI assistant. AI assistant can generate Code in various Programming Languages along with necessary explanation.
### Instruction:
{instruction}
### Response:
```
You can modify above Prompt as per your requirement. I have used Alpaca format.
I want to say special Thanks to the Open Source community for helping & guiding me to better understand the AI/Model development.
Thank you for your love & support.
**Examples**
1. **Bayes Theorem - Python**
![image/png](https://cdn-uploads.huggingface.co/production/uploads/64aea8ff67511bd3d965697b/J8uqoT_LYhPW2VpnE1K-8.png)
2. **Fermat's little theorem**
![image/png](https://cdn-uploads.huggingface.co/production/uploads/64aea8ff67511bd3d965697b/H0sc9jk7ypv_N5V7LSANl.png)
3. **The Arrhenius equation using R**
![image/png](https://cdn-uploads.huggingface.co/production/uploads/64aea8ff67511bd3d965697b/BQ8PZhYhoZ9wpVMPXJPnQ.png)
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_ajibawa-2023__Code-290k-6.7B-Instruct)
| Metric |Value|
|---------------------------------|----:|
|Avg. |36.64|
|AI2 Reasoning Challenge (25-Shot)|34.90|
|HellaSwag (10-Shot) |51.99|
|MMLU (5-Shot) |34.89|
|TruthfulQA (0-shot) |41.95|
|Winogrande (5-shot) |52.64|
|GSM8k (5-shot) | 3.49|