|
--- |
|
language: |
|
- en |
|
license: other |
|
tags: |
|
- code |
|
datasets: |
|
- ajibawa-2023/Code-290k-ShareGPT |
|
model-index: |
|
- name: Code-290k-6.7B-Instruct |
|
results: |
|
- task: |
|
type: text-generation |
|
name: Text Generation |
|
dataset: |
|
name: AI2 Reasoning Challenge (25-Shot) |
|
type: ai2_arc |
|
config: ARC-Challenge |
|
split: test |
|
args: |
|
num_few_shot: 25 |
|
metrics: |
|
- type: acc_norm |
|
value: 34.9 |
|
name: normalized accuracy |
|
source: |
|
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=ajibawa-2023/Code-290k-6.7B-Instruct |
|
name: Open LLM Leaderboard |
|
- task: |
|
type: text-generation |
|
name: Text Generation |
|
dataset: |
|
name: HellaSwag (10-Shot) |
|
type: hellaswag |
|
split: validation |
|
args: |
|
num_few_shot: 10 |
|
metrics: |
|
- type: acc_norm |
|
value: 51.99 |
|
name: normalized accuracy |
|
source: |
|
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=ajibawa-2023/Code-290k-6.7B-Instruct |
|
name: Open LLM Leaderboard |
|
- task: |
|
type: text-generation |
|
name: Text Generation |
|
dataset: |
|
name: MMLU (5-Shot) |
|
type: cais/mmlu |
|
config: all |
|
split: test |
|
args: |
|
num_few_shot: 5 |
|
metrics: |
|
- type: acc |
|
value: 34.89 |
|
name: accuracy |
|
source: |
|
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=ajibawa-2023/Code-290k-6.7B-Instruct |
|
name: Open LLM Leaderboard |
|
- task: |
|
type: text-generation |
|
name: Text Generation |
|
dataset: |
|
name: TruthfulQA (0-shot) |
|
type: truthful_qa |
|
config: multiple_choice |
|
split: validation |
|
args: |
|
num_few_shot: 0 |
|
metrics: |
|
- type: mc2 |
|
value: 41.95 |
|
source: |
|
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=ajibawa-2023/Code-290k-6.7B-Instruct |
|
name: Open LLM Leaderboard |
|
- task: |
|
type: text-generation |
|
name: Text Generation |
|
dataset: |
|
name: Winogrande (5-shot) |
|
type: winogrande |
|
config: winogrande_xl |
|
split: validation |
|
args: |
|
num_few_shot: 5 |
|
metrics: |
|
- type: acc |
|
value: 52.64 |
|
name: accuracy |
|
source: |
|
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=ajibawa-2023/Code-290k-6.7B-Instruct |
|
name: Open LLM Leaderboard |
|
- task: |
|
type: text-generation |
|
name: Text Generation |
|
dataset: |
|
name: GSM8k (5-shot) |
|
type: gsm8k |
|
config: main |
|
split: test |
|
args: |
|
num_few_shot: 5 |
|
metrics: |
|
- type: acc |
|
value: 3.49 |
|
name: accuracy |
|
source: |
|
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=ajibawa-2023/Code-290k-6.7B-Instruct |
|
name: Open LLM Leaderboard |
|
--- |
|
|
|
**Code-290k-6.7B-Instruct** |
|
|
|
This model is trained on [DeepSeek-Coder-6.7B-Instruct](https://huggingface.co/deepseek-ai/deepseek-coder-6.7b-instruct). I have used my existing dataset [Code-290k-ShareGPT](https://huggingface.co/datasets/ajibawa-2023/Code-290k-ShareGPT) for training purpose. |
|
It is trained on around 290000 set of codes. Along with Python, Java, JavaScript, GO, C++, Rust, Ruby, Sql, MySql, R, Julia, Haskell, etc. code with detailed explanation is used for training purpose. |
|
This model utilises Alpaca format. Besides code generation it will also give you explanation. |
|
|
|
**Training:** |
|
|
|
Entire dataset was trained on 4 x A100 80GB. For 3 epoch, training took 85 hours. DeepSeek-Coder codebase and DeepSpeed was used for training purpose. |
|
|
|
This is a full fine tuned model. |
|
|
|
Links for quantized models are given below. |
|
|
|
**Exllama** |
|
|
|
Exllama v2:[Link](https://huggingface.co/bartowski/Code-290k-6.7B-Instruct-exl2) |
|
|
|
Extremely thankful to [Bartowski](https://huggingface.co/bartowski) for making Quantized version of the model. |
|
|
|
|
|
**Example Prompt**: |
|
|
|
``` |
|
This is a conversation with your helpful AI assistant. AI assistant can generate Code in various Programming Languages along with necessary explanation. |
|
|
|
### Instruction: |
|
{instruction} |
|
|
|
### Response: |
|
``` |
|
You can modify above Prompt as per your requirement. I have used Alpaca format. |
|
|
|
I want to say special Thanks to the Open Source community for helping & guiding me to better understand the AI/Model development. |
|
|
|
Thank you for your love & support. |
|
|
|
**Examples** |
|
|
|
1. **Bayes Theorem - Python** |
|
|
|
|
|
![image/png](https://cdn-uploads.huggingface.co/production/uploads/64aea8ff67511bd3d965697b/J8uqoT_LYhPW2VpnE1K-8.png) |
|
|
|
2. **Fermat's little theorem** |
|
|
|
![image/png](https://cdn-uploads.huggingface.co/production/uploads/64aea8ff67511bd3d965697b/H0sc9jk7ypv_N5V7LSANl.png) |
|
|
|
3. **The Arrhenius equation using R** |
|
|
|
![image/png](https://cdn-uploads.huggingface.co/production/uploads/64aea8ff67511bd3d965697b/BQ8PZhYhoZ9wpVMPXJPnQ.png) |
|
|
|
|
|
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard) |
|
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_ajibawa-2023__Code-290k-6.7B-Instruct) |
|
|
|
| Metric |Value| |
|
|---------------------------------|----:| |
|
|Avg. |36.64| |
|
|AI2 Reasoning Challenge (25-Shot)|34.90| |
|
|HellaSwag (10-Shot) |51.99| |
|
|MMLU (5-Shot) |34.89| |
|
|TruthfulQA (0-shot) |41.95| |
|
|Winogrande (5-shot) |52.64| |
|
|GSM8k (5-shot) | 3.49| |
|
|
|
|