File size: 2,093 Bytes
56ac54d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
---
tags:
- text-to-image
- stable-diffusion
- diffusers
- image-generation
- flux
- safetensors
base_model: black-forest-labs/FLUX.1-dev
instance_prompt: cinematic_1940s
license: other
license_name: flux-1-dev-non-commercial-license
license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md
language:
- en
library_name: diffusers
---
# Cinematic-1940s

<div class="container">
  <img src="https://cdn-uploads.huggingface.co/production/uploads/652c2a63d78452c4742cd3d3/GZInT9JHrvs5iwWOSTz-A.png" width="1024"/>
</div>

Cinematic-1940s is a LoRA model finetuned to capture the essence of 1940s cinema, specifically designed to enhance the vintage film texture. It embodies a monochrome, high-contrast color palette reminiscent of classic film noir, which is particularly evident in its portrayal of characters (with a subtle bias towards the charismatic charm of the era), bustling cityscapes, and dramatic shadows. The model delivers an exceptional aesthetic experience, capturing the essence of a bygone era with modern precision.

<div class="container">
  <img src="https://cdn-uploads.huggingface.co/production/uploads/652c2a63d78452c4742cd3d3/jwvBnI0R3zVf3E0MN-frq.png" width="1024"/>
</div>


## Trigger words

You should use `cinematic_1940s` to trigger the image generation.


## Inference

```python
import torch
from diffusers import FluxPipeline

pipe = FluxPipeline.from_pretrained("black-forest-labs/FLUX.1-dev", torch_dtype=torch.bfloat16)
pipe.load_lora_weights('aixonlab/Cinematic-1940s', weight_name='cinematic-1940s.safetensors')
pipe.fuse_lora(lora_scale=0.8)
pipe.to("cuda")

prompt = "a gorgeous woman and a man, cinematic_1940s"

image = pipe(prompt, 
             num_inference_steps=24, 
             guidance_scale=3.0,
             width=768, height=1024,
            ).images[0]
image.save(f"example.png")
```


## Acknowledgements
This model is trained by AIXON Lab. We release this model under permissions. The model follows [flux-1-dev-non-commercial-license](https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md).