File size: 2,162 Bytes
c17de45
 
82d268e
 
 
 
 
 
 
 
 
c17de45
 
82d268e
 
c17de45
82d268e
c17de45
82d268e
 
 
 
 
c17de45
82d268e
c17de45
82d268e
c17de45
82d268e
c17de45
82d268e
c17de45
82d268e
c17de45
82d268e
c17de45
82d268e
c17de45
82d268e
c17de45
82d268e
 
 
 
 
 
 
 
c17de45
82d268e
c17de45
82d268e
 
 
 
 
 
 
 
 
 
 
 
c17de45
 
82d268e
c17de45
82d268e
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
---
library_name: transformers
license: mit
base_model: openai-community/roberta-large-openai-detector
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: phishing-binary-classification
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# phishing-binary-classification

This model is a fine-tuned version of [openai-community/roberta-large-openai-detector](https://huggingface.co/openai-community/roberta-large-openai-detector) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2813
- Accuracy: 0.882
- Auc: 0.954

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10

### Training results

| Training Loss | Epoch | Step  | Validation Loss | Accuracy | Auc   |
|:-------------:|:-----:|:-----:|:---------------:|:--------:|:-----:|
| 0.5501        | 1.0   | 1250  | 0.4015          | 0.818    | 0.927 |
| 0.4611        | 2.0   | 2500  | 0.3605          | 0.842    | 0.923 |
| 0.4445        | 3.0   | 3750  | 0.3759          | 0.827    | 0.939 |
| 0.413         | 4.0   | 5000  | 0.3058          | 0.866    | 0.946 |
| 0.4152        | 5.0   | 6250  | 0.3554          | 0.837    | 0.953 |
| 0.4086        | 6.0   | 7500  | 0.2908          | 0.874    | 0.949 |
| 0.4057        | 7.0   | 8750  | 0.3338          | 0.853    | 0.946 |
| 0.3966        | 8.0   | 10000 | 0.2807          | 0.88     | 0.953 |
| 0.3961        | 9.0   | 11250 | 0.2836          | 0.878    | 0.952 |
| 0.3962        | 10.0  | 12500 | 0.2813          | 0.882    | 0.954 |


### Framework versions

- Transformers 4.45.1
- Pytorch 2.4.0
- Datasets 3.0.1
- Tokenizers 0.20.0