File size: 2,363 Bytes
826c730
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a6c9685
826c730
 
 
 
 
 
 
 
 
a6c9685
 
826c730
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
429faf1
 
826c730
 
 
 
 
a6c9685
 
 
 
 
 
 
 
 
 
826c730
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
---
license: apache-2.0
base_model: facebook/wav2vec2-base
tags:
- generated_from_trainer
datasets:
- minds14
metrics:
- accuracy
model-index:
- name: ft-wav2vec2-with-minds
  results:
  - task:
      name: Audio Classification
      type: audio-classification
    dataset:
      name: minds14
      type: minds14
      config: en-US
      split: train
      args: en-US
    metrics:
    - name: Accuracy
      type: accuracy
      value: 0.07964601769911504
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# ft-wav2vec2-with-minds

This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the minds14 dataset.
It achieves the following results on the evaluation set:
- Loss: 2.6507
- Accuracy: 0.0796

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 256
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 10
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| No log        | 1.0   | 2    | 2.6510          | 0.0088   |
| No log        | 2.0   | 4    | 2.6535          | 0.0265   |
| No log        | 3.0   | 6    | 2.6496          | 0.0442   |
| No log        | 4.0   | 8    | 2.6469          | 0.0531   |
| 2.6324        | 5.0   | 10   | 2.6446          | 0.0619   |
| 2.6324        | 6.0   | 12   | 2.6507          | 0.0796   |
| 2.6324        | 7.0   | 14   | 2.6551          | 0.0619   |
| 2.6324        | 8.0   | 16   | 2.6529          | 0.0531   |
| 2.6324        | 9.0   | 18   | 2.6497          | 0.0619   |
| 2.6299        | 10.0  | 20   | 2.6503          | 0.0619   |


### Framework versions

- Transformers 4.35.2
- Pytorch 2.0.0
- Datasets 2.15.0
- Tokenizers 0.15.0