license: apache-2.0
datasets:
- aisquared/databricks-dolly-15k
language:
- en
library_name: transformers
Model Card for dlite-v2-774m
AI Squared's dlite-v2-774m
is a large language
model which is derived from OpenAI's large GPT-2 model and fine-tuned on a corpus of 15k records
(Databricks' "Dolly 15k" Dataset) to help it exhibit chat-based capabilities.
Just like Databricks' Dolly V2 models,
dlite-v2-774m
(and all other members of the dlite-v2
family) is licensed for both research and commercial use. We are extremely grateful
for the work that Databricks has done to create the databricks-dolly-15k
dataset, for without it we would not be able to create and release this
model under such an open and permissive license.
While dlite-v2-774m
is not a state-of-the-art model, we believe that the level of interactivity that can be achieved on such a small model that is trained so cheaply
is important to showcase, as it continues to demonstrate that creating powerful AI capabilities may be much more accessible than previously thought.
Model Description
- Developed by: AI Squared, Inc.
- Shared by: AI Squared, Inc.
- Model type: Large Language Model
- Language(s) (NLP): EN
- License: Apache v2.0
- Finetuned from model: GPT-2
Bias, Risks, and Limitations
dlite-v2-774m
is not a state-of-the-art language model. dlite-v2-774m
is an experimental technology, and as with any experimental technology,
AI Squared urges potential users of this technology to test its capabilities thoroughly before usage.
Furthermore, the model can sometimes exhibit undesired behaviors. Some of these behaviors include,
but are not limited to: factual inaccuracies, biases, offensive responses, toxicity, and hallucinations.
Just as with any other LLM, we advise users of this technology to exercise good judgment when applying this technology.
Usage
The code below shows how to use dlite-v2-774m
in the way which it was trained. While the model can be used "out of the box" using the
transformers
library, using the function defined below to create a response from the model will achieve better results.
Load Model and Tokenizer from this Repository Using the transformers
Package
from transformers import AutoModelForCausalLM, AutoTokenizer
import numpy as np
import re
model_id = 'aisquared/dlite-v2-774m'
tokenizer = AutoTokenizer.from_pretrained(model_id, padding_side = 'left')
model = AutoModelForCausalLM.from_pretrained(model_id, trust_remote_code = True, device_map = 'auto')
Create the Prompt Format and Other Variables
PROMPT = """Below is an instruction that describes a task. Write a response that appropriately completes the request.
### Instruction:
{instruction}
### Response:
"""
END_KEY = '### End'
RESPONSE_KEY = '### Response:\n'
Create a Function to Retrieve a Response
def create_response(
instruction,
model,
tokenizer,
do_sample = True,
max_new_tokens = 256,
top_p = 0.92,
top_k = 0,
**kwargs
):
"""
Create a response from the model by using a formatted prompt
"""
input_ids = tokenizer(
PROMPT.format(instruction=instruction), return_tensors="pt"
).input_ids
gen_tokens = model.generate(
input_ids,
pad_token_id=tokenizer.pad_token_id,
do_sample=do_sample,
max_new_tokens=max_new_tokens,
top_p=top_p,
top_k=top_k,
**kwargs,
)
decoded = tokenizer.batch_decode(gen_tokens)[0]
# The response appears after "### Response:". The model has been trained to append "### End" at the end.
m = re.search(r"#+\s*Response:\s*(.+?)#+\s*End", decoded, flags=re.DOTALL)
response = None
if m:
response = m.group(1).strip()
else:
# The model might not generate the "### End" sequence before reaching the max tokens. In this case, return
# everything after "### Response:".
m = re.search(r"#+\s*Response:\s*(.+)", decoded, flags=re.DOTALL)
if m:
response = m.group(1).strip()
else:
pass
return response
Model Performance Metrics
We present the results from various model benchmarks on the EleutherAI LLM Evaluation Harness for all models in the DLite family. Model results are sorted by mean score, ascending, to provide an ordering. These metrics serve to further show that none of the DLite models are state of the art, but rather further show that chat-like behaviors in LLMs can be trained almost independent of model size.
model | openbookqa | arc_easy | winogrande | hellaswag | arc_challenge | piqa | boolq |
---|---|---|---|---|---|---|---|
gpt2 | 0.164 | 0.438131 | 0.51618 | 0.289185 | 0.190273 | 0.628945 | 0.487156 |
dlite-v2-124m | 0.174 | 0.44697 | 0.502762 | 0.291974 | 0.192833 | 0.631665 | 0.520183 |
dlite-v1-124m | 0.17 | 0.462542 | 0.494081 | 0.293268 | 0.223549 | 0.622416 | 0.502446 |
gpt2-medium | 0.186 | 0.490741 | 0.531176 | 0.333101 | 0.215017 | 0.676279 | 0.585933 |
dlite-v2-355m | 0.206 | 0.493687 | 0.524073 | 0.334993 | 0.226109 | 0.670838 | 0.582263 |
dlite-v1-355m | 0.216 | 0.507576 | 0.496448 | 0.338478 | 0.234642 | 0.664309 | 0.600306 |
gpt2-large | 0.194 | 0.531566 | 0.553275 | 0.363971 | 0.216724 | 0.703482 | 0.604893 |
dlite-774m-v2 | 0.212 | 0.539562 | 0.5588 | 0.365565 | 0.234642 | 0.700218 | 0.60367 |
dlite-774m-v1 | 0.218 | 0.545875 | 0.562747 | 0.375124 | 0.250853 | 0.698041 | 0.614985 |
gpt2-xl | 0.224 | 0.582912 | 0.583268 | 0.400418 | 0.25 | 0.708379 | 0.617737 |
dlite-v1-1.5b | 0.226 | 0.588384 | 0.584846 | 0.401414 | 0.268771 | 0.708379 | 0.624159 |
dlite-v2-1.5b | 0.226 | 0.59596 | 0.581689 | 0.40719 | 0.273891 | 0.705114 | 0.630887 |