Transformers
Safetensors
English
mc-llava
llava
phi
custom_code
Inference Endpoints
File size: 6,970 Bytes
8b0fa0e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
import math
from typing import List, Optional, Union

import torch
from PIL import Image
from transformers import ImageProcessingMixin, ProcessorMixin, SiglipImageProcessor, AutoTokenizer, AutoImageProcessor
from transformers.feature_extraction_utils import BatchFeature
from transformers.image_utils import ImageInput
from transformers.tokenization_utils_base import (
    PaddingStrategy,
    PreTokenizedInput,
    TextInput,
    TruncationStrategy,
)
from transformers.utils import TensorType


class MultiCropImageProcessor(ImageProcessingMixin):
    def __init__(self, model_name, max_crops=0, **kwargs):
        self.processor = SiglipImageProcessor.from_pretrained(model_name)
        self.crop_size = 384
        self.max_crops = max_crops
        self.stride_ratio = 2

    def __call__(
        self,
        images: List[Image.Image],
        max_crops: int = -1,
    ):
        res = {
            "pixel_values": [],
            "coords": [],
        }
        if max_crops < 0:
            max_crops = self.max_crops
        for image in images:
            outputs, output_coords = self.process_image(image, max_crops)
            res["pixel_values"].append(outputs)
            res["coords"].append(output_coords)
            return res

    def process_image(
        self,
        image: Image.Image,
        max_crops: int
    ):
        outputs = []
        output_coords = []
        outputs.append(self.processor(image, return_tensors="pt").pixel_values)
        output_coords.append(torch.tensor([0.5, 0.5]))
        width, height = image.size
        crop_size = self.crop_size
        stride = crop_size // self.stride_ratio
        if (
            max_crops == 0
            or width <= (crop_size + stride)
            and height <= (crop_size + stride)
        ):
            outputs = torch.cat(outputs, dim=0)
            output_coords = torch.cat(output_coords, dim=0)
            return outputs, output_coords
        total_tokens = math.inf
        while total_tokens > max_crops:
            total_tokens = (
                math.floor((width - crop_size) / stride) + 1
            ) * (
                math.floor((height - crop_size) / stride) + 1
            )
            if total_tokens > max_crops:
                crop_size += 10
                stride = crop_size // self.stride_ratio
        stride = crop_size // self.stride_ratio
        x_steps = int(math.floor((width - crop_size) / stride) + 1)
        if x_steps < 1:
            x_steps = 1
        y_steps = int(math.floor((height - crop_size) / stride) + 1)
        if y_steps < 1:
            y_steps = 1
        if x_steps == 1 and y_steps == 1:
            outputs = torch.cat(outputs, dim=0)
            output_coords = torch.cat(output_coords, dim=0)
            return outputs, output_coords
        x_coords = []
        y_coords = []
        for i in range(x_steps):
            x_coords.append([i * stride, i * stride + crop_size])
        if x_coords[-1][1] != width:
            x_coords[-1][1] = width
        for i in range(y_steps):
            y_coords.append([i * stride, i * stride + crop_size])
        if y_coords[-1][1] != height:
            y_coords[-1][1] = height
        image_parts = []
        part_coords = []
        for i in range(len(x_coords)):
            for j in range(len(y_coords)):
                image_parts.append(
                    image.crop(
                        (x_coords[i][0], y_coords[j][0], x_coords[i][1], y_coords[j][1])
                    )
                )
                part_coords.append(
                    torch.tensor(
                        [
                            (x_coords[i][0] + x_coords[i][1]) / 2 / width,
                            (y_coords[j][0] + y_coords[j][1]) / 2 / height,
                        ]
                    )
                )
        for image_part in image_parts:
            outputs.append(self.processor(image_part, return_tensors="pt").pixel_values)
        for part_coord in part_coords:
            output_coords.append(part_coord)
        outputs = torch.cat(outputs, dim=0)
        output_coords = torch.stack(output_coords, dim=0)
        return outputs, output_coords


class LlavaProcessor(ProcessorMixin):
    attributes = ["image_processor", "tokenizer"]
    image_processor_class = MultiCropImageProcessor
    tokenizer_class = "SiglipTokenizer"

    def __init__(self, image_processor: MultiCropImageProcessor, tokenizer):
        self.image_processor = image_processor
        self.tokenizer = tokenizer
        self.search_model = None
    
    @classmethod
    def from_pretrained(cls, path, trust_remote_code=True, **kwargs):
        tokenizer = AutoTokenizer.from_pretrained(path, trust_remote_code=trust_remote_code)
        image_processor = MultiCropImageProcessor(path, trust_remote_code=trust_remote_code)
        return LlavaProcessor(image_processor, tokenizer)

    def __call__(
        self,
        text: Union[
            TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]
        ] = None,
        images: ImageInput = None,
        model = None,
        max_crops: int = 0,
        num_tokens = None,
        padding: Union[bool, str, PaddingStrategy] = False,
        truncation: Union[bool, str, TruncationStrategy] = None,
        max_length=None,
        return_tensors: Optional[Union[str, TensorType]] = TensorType.PYTORCH,
    ) -> BatchFeature:
        if images is not None:
            processor_outputs = self.image_processor(images, max_crops)
            pixel_values = processor_outputs["pixel_values"]
            pixel_values = [
                value.to(model.device).to(model.dtype) for value in pixel_values
            ]
            coords = processor_outputs["coords"]
            coords = [value.to(model.device).to(model.dtype) for value in coords]
            image_outputs = model.vision_model(pixel_values, coords, num_tokens)
            image_features = model.multi_modal_projector(image_outputs)
        else:
            image_features = None
        text_inputs = self.tokenizer(
            text,
            return_tensors=return_tensors,
            padding=padding,
            truncation=truncation,
            max_length=max_length,
        )
        text_inputs['input_ids'] = text_inputs['input_ids'].to(model.device)
        text_inputs['attention_mask'] = text_inputs['attention_mask'].to(model.device)
        return BatchFeature(data={**text_inputs, "image_features": image_features})

    def batch_decode(self, *args, **kwargs):
        return self.tokenizer.batch_decode(*args, **kwargs)

    def decode(self, *args, **kwargs):
        return self.tokenizer.decode(*args, **kwargs)

    @property
    def model_input_names(self):
        tokenizer_input_names = self.tokenizer.model_input_names
        image_processor_input_names = self.image_processor.model_input_names
        return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names))