File size: 2,182 Bytes
fc245cd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 |
---
license: apache-2.0
tags:
- summarization
- generated_from_trainer
metrics:
- rouge
model-index:
- name: mt5-base-wikinewssum-italian
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# mt5-base-wikinewssum-italian
This model is a fine-tuned version of [google/mt5-base](https://huggingface.co/google/mt5-base) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 10.5739
- Rouge1: 2.1728
- Rouge2: 0.1516
- Rougel: 2.0846
- Rougelsum: 2.0515
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5.6e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 8
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 8
### Training results
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum |
|:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:|
| No log | 1.0 | 8 | 16.6193 | 2.4011 | 0.3829 | 2.1505 | 2.2161 |
| No log | 2.0 | 16 | 15.8909 | 2.5165 | 0.2799 | 2.3403 | 2.3523 |
| No log | 3.0 | 24 | 15.4843 | 2.2794 | 0.2252 | 2.1849 | 2.1382 |
| 17.2559 | 4.0 | 32 | 13.0850 | 2.2448 | 0.1516 | 2.1426 | 2.0859 |
| 17.2559 | 5.0 | 40 | 11.7838 | 2.2448 | 0.1516 | 2.1426 | 2.0859 |
| 17.2559 | 6.0 | 48 | 11.3207 | 2.2424 | 0.1516 | 2.1423 | 2.1171 |
| 17.2559 | 7.0 | 56 | 10.7871 | 2.1081 | 0.1516 | 2.0227 | 1.9838 |
| 14.6026 | 8.0 | 64 | 10.5739 | 2.1728 | 0.1516 | 2.0846 | 2.0515 |
### Framework versions
- Transformers 4.13.0
- Pytorch 1.10.1
- Datasets 1.16.1
- Tokenizers 0.10.3
|