File size: 2,191 Bytes
55180f3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 |
---
license: apache-2.0
tags:
- summarization
- generated_from_trainer
metrics:
- rouge
model-index:
- name: mt5-base-wikinewssum-french
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# mt5-base-wikinewssum-french
This model is a fine-tuned version of [google/mt5-base](https://huggingface.co/google/mt5-base) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 2.0917
- Rouge1: 12.0984
- Rouge2: 5.7289
- Rougel: 9.9245
- Rougelsum: 11.0697
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5.6e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 8
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 8
### Training results
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum |
|:-------------:|:-----:|:----:|:---------------:|:-------:|:------:|:------:|:---------:|
| No log | 1.0 | 549 | 2.3203 | 11.5172 | 4.9352 | 9.3617 | 10.4605 |
| No log | 2.0 | 1098 | 2.2057 | 11.8469 | 5.2369 | 9.6452 | 10.8337 |
| No log | 3.0 | 1647 | 2.1525 | 11.9096 | 5.4027 | 9.7648 | 10.9315 |
| 3.1825 | 4.0 | 2196 | 2.1307 | 12.0782 | 5.5848 | 9.9614 | 11.1081 |
| 3.1825 | 5.0 | 2745 | 2.1172 | 11.9821 | 5.6042 | 9.8216 | 11.0077 |
| 3.1825 | 6.0 | 3294 | 2.1012 | 12.0845 | 5.6834 | 9.9119 | 11.0741 |
| 3.1825 | 7.0 | 3843 | 2.0964 | 12.1296 | 5.7271 | 9.9495 | 11.1227 |
| 2.3376 | 8.0 | 4392 | 2.0917 | 12.0984 | 5.7289 | 9.9245 | 11.0697 |
### Framework versions
- Transformers 4.13.0
- Pytorch 1.10.1
- Datasets 1.16.1
- Tokenizers 0.10.3
|