File size: 1,678 Bytes
9660cb4 869831f 9660cb4 869831f 9660cb4 b7696b1 9660cb4 a49b534 9660cb4 e38d5b2 9660cb4 64538b8 9660cb4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 |
---
language: ko
tags:
- bert
- mrc
datasets:
- klue
license: cc-by-sa-4.0
---
# bert-base for QA
**klue-bert-base-mrc DEMO**: [Ainize DEMO](https://main-klue-mrc-bert-scy6500.endpoint.ainize.ai/)
**klue-bert-base-mrc API**: [Ainize API](https://ainize.ai/scy6500/KLUE-MRC-BERT?branch=main)
## Overview
**Language model:** klue/bert-base
**Language:** Korean
**Downstream-task:** Extractive QA
**Training data:** KLUE-MRC
**Eval data:** KLUE-MRC
**Code:** See [Ainize Workspace](https://link.ainize.ai/3qER4lw)
## Usage
### In Transformers
```python
from transformers import AutoModelForQuestionAnswering, AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained("ainize/klue-bert-base-mrc")
model = AutoModelForQuestionAnswering.from_pretrained("ainize/klue-bert-base-mrc")
context = "your context"
question = "your question"
encodings = tokenizer(context, question, max_length=512, truncation=True,
padding="max_length", return_token_type_ids=False)
encodings = {key: torch.tensor([val]) for key, val in encodings.items()}
input_ids = encodings["input_ids"]
attention_mask = encodings["attention_mask"]
pred = model(input_ids, attention_mask=attention_mask)
start_logits, end_logits = pred.start_logits, pred.end_logits
token_start_index, token_end_index = start_logits.argmax(dim=-1), end_logits.argmax(dim=-1)
pred_ids = input_ids[0][token_start_index: token_end_index + 1]
prediction = tokenizer.decode(pred_ids)
```
## About us
[Teachable NLP](https://ainize.ai/teachable-nlp) - Train NLP models with your own text without writing any code
[Ainize](https://ainize.ai/) - Deploy ML project using free gpu
|