File size: 1,968 Bytes
01a26a8 841943e 01a26a8 841943e 01a26a8 841943e 01a26a8 841943e 3f7a567 841943e 01a26a8 841943e 3f7a567 841943e 3f7a567 841943e 3f7a567 841943e 01a26a8 841943e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 |
---
tags:
- text-classification
- emotion-analysis
language:
- it
widget:
- text: I love AutoTrain 🤗
datasets:
- tradicio/autotrain-data-it-emotion-analysis
- dair-ai/emotion
co2_eq_emissions:
emissions: 0.4489187526120041
license: cc-by-sa-4.0
metrics:
- accuracy
- f1
- recall
pipeline_tag: text-classification
---
# IT-EMOTION-ANALYZER
This is a model for emotion analysis of italian sentences trained on a translated dataset by [Google Translator](https://pypi.org/project/deep-translator/). It maps sentences & paragraphs with 6 emotions which are:
- 0: sadness
- 1: joy
- 2: love
- 3: anger
- 4: fear
- 5: surprise
<!--- Describe your model here -->
## Model in action
Using this model becomes easy when you have [transformers](https://github.com/huggingface/transformers) installed:
```
pip install -U transformers
```
Then you can use the model like this:
```python
from transformers import AutoTokenizer, AutoModelForSequenceClassification
from transformers import pipeline
sentences = ["Questa è una frase triste", "Questa è una frase felice", "Questa è una frase di stupore"]
tokenizer = AutoTokenizer.from_pretrained("aiknowyou/it-emotion-analyzer")
model = AutoModelForSequenceClassification.from_pretrained("aiknowyou/it-emotion-analyzer")
emotion_analysis = pipeline("sentiment-analysis", model=model, tokenizer=tokenizer)
emotion_analysis(sentences)
```
Obtaining the following result:
```python
[{'label': '0', 'score': 0.9481984972953796},
{'label': '1', 'score': 0.9299975037574768},
{'label': '5', 'score': 0.9543816447257996}]
```
# Model Trained Using AutoTrain
- Problem type: Multi-class Classification
- Model ID: 43095109829
- CO2 Emissions (in grams): 0.4489
## Validation Metrics
- Loss: 0.566
- Accuracy: 0.828
- Macro F1: 0.828
- Micro F1: 0.828
- Weighted F1: 0.828
- Macro Precision: 0.828
- Micro Precision: 0.828
- Weighted Precision: 0.828
- Macro Recall: 0.828
- Micro Recall: 0.828
- Weighted Recall: 0.828 |