metadata
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- image_folder
metrics:
- accuracy
model-index:
- name: convnext-tiny-224-finetuned-eurosat-albumentations
results:
- task:
name: Image Classification
type: image-classification
dataset:
name: image_folder
type: image_folder
args: default
metrics:
- name: Accuracy
type: accuracy
value: 0.9803703703703703
convnext-tiny-224-finetuned-eurosat-albumentations
This model is a fine-tuned version of facebook/convnext-tiny-224 on the image_folder dataset. It achieves the following results on the evaluation set:
- Loss: 0.0886
- Accuracy: 0.9804
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 256
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 3
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
0.3879 | 1.0 | 95 | 0.2927 | 0.9567 |
0.1095 | 2.0 | 190 | 0.1102 | 0.9759 |
0.0911 | 3.0 | 285 | 0.0886 | 0.9804 |
Framework versions
- Transformers 4.19.2
- Pytorch 1.11.0+cu113
- Datasets 2.2.2
- Tokenizers 0.12.1